bioimageio.spec

  1"""
  2.. include:: ../../README.md
  3"""
  4
  5# ruff: noqa: E402
  6from loguru import logger
  7
  8logger.disable("bioimageio.spec")
  9
 10from . import (
 11    application,
 12    common,
 13    conda_env,
 14    dataset,
 15    generic,
 16    model,
 17    pretty_validation_errors,
 18    summary,
 19    utils,
 20)
 21from ._description import (
 22    LatestResourceDescr,
 23    ResourceDescr,
 24    SpecificResourceDescr,
 25    build_description,
 26    dump_description,
 27    validate_format,
 28)
 29from ._get_conda_env import BioimageioCondaEnv, get_conda_env
 30from ._internal import settings
 31from ._internal.common_nodes import InvalidDescr
 32from ._internal.validation_context import ValidationContext, get_validation_context
 33from ._io import (
 34    load_dataset_description,
 35    load_description,
 36    load_description_and_validate_format_only,
 37    load_model_description,
 38    save_bioimageio_yaml_only,
 39    update_format,
 40    update_hashes,
 41)
 42from ._package import (
 43    get_resource_package_content,
 44    save_bioimageio_package,
 45    save_bioimageio_package_as_folder,
 46    save_bioimageio_package_to_stream,
 47)
 48from ._upload import upload
 49from ._version import VERSION as __version__
 50from .application import AnyApplicationDescr, ApplicationDescr
 51from .dataset import AnyDatasetDescr, DatasetDescr
 52from .generic import AnyGenericDescr, GenericDescr
 53from .model import AnyModelDescr, ModelDescr
 54from .notebook import AnyNotebookDescr, NotebookDescr
 55from .pretty_validation_errors import enable_pretty_validation_errors_in_ipynb
 56from .summary import ValidationSummary
 57
 58__all__ = [
 59    "__version__",
 60    "AnyApplicationDescr",
 61    "AnyDatasetDescr",
 62    "AnyGenericDescr",
 63    "AnyModelDescr",
 64    "AnyNotebookDescr",
 65    "application",
 66    "ApplicationDescr",
 67    "BioimageioCondaEnv",
 68    "build_description",
 69    "common",
 70    "conda_env",
 71    "dataset",
 72    "DatasetDescr",
 73    "dump_description",
 74    "enable_pretty_validation_errors_in_ipynb",
 75    "generic",
 76    "GenericDescr",
 77    "get_conda_env",
 78    "get_resource_package_content",
 79    "get_validation_context",
 80    "InvalidDescr",
 81    "LatestResourceDescr",
 82    "load_dataset_description",
 83    "load_description_and_validate_format_only",
 84    "load_description",
 85    "load_model_description",
 86    "model",
 87    "ModelDescr",
 88    "NotebookDescr",
 89    "pretty_validation_errors",
 90    "ResourceDescr",
 91    "save_bioimageio_package_as_folder",
 92    "save_bioimageio_package_to_stream",
 93    "save_bioimageio_package",
 94    "save_bioimageio_yaml_only",
 95    "settings",
 96    "SpecificResourceDescr",
 97    "summary",
 98    "update_format",
 99    "update_hashes",
100    "upload",
101    "utils",
102    "validate_format",
103    "ValidationContext",
104    "ValidationSummary",
105]
__version__ = '0.5.5.5'
AnyApplicationDescr = typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], typing.Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')]
AnyDatasetDescr = typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], typing.Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')]
AnyGenericDescr = typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], typing.Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]
AnyModelDescr = typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], typing.Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')]
AnyNotebookDescr = typing.Annotated[typing.Union[typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]
class ApplicationDescr(bioimageio.spec.generic.v0_3.GenericDescrBase):
33class ApplicationDescr(GenericDescrBase):
34    """Bioimage.io description of an application."""
35
36    implemented_type: ClassVar[Literal["application"]] = "application"
37    if TYPE_CHECKING:
38        type: Literal["application"] = "application"
39    else:
40        type: Literal["application"]
41
42    id: Optional[ApplicationId] = None
43    """bioimage.io-wide unique resource identifier
44    assigned by bioimage.io; version **un**specific."""
45
46    parent: Optional[ApplicationId] = None
47    """The description from which this one is derived"""
48
49    source: Annotated[
50        FAIR[Optional[FileSource_]],
51        Field(description="URL or path to the source of the application"),
52    ] = None
53    """The primary source of the application"""

Bioimage.io description of an application.

implemented_type: ClassVar[Literal['application']] = 'application'

bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.

The description from which this one is derived

source: Annotated[Optional[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')]), AfterValidator(func=<function wo_special_file_name at 0x7f7894dbf1a0>), PlainSerializer(func=<function _package_serializer at 0x7f78868563e0>, return_type=PydanticUndefined, when_used='unless-none')]], AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78952f5d00>, severity=35, msg=None, context=None), FieldInfo(annotation=NoneType, required=True, description='URL or path to the source of the application')]

The primary source of the application

implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 3, 0)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'forbid', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
class BioimageioCondaEnv(bioimageio.spec.conda_env.CondaEnv):
 80class BioimageioCondaEnv(CondaEnv):
 81    """A special `CondaEnv` that
 82    - automatically adds bioimageio specific dependencies
 83    - sorts dependencies
 84    """
 85
 86    @model_validator(mode="after")
 87    def _normalize_bioimageio_conda_env(self):
 88        """update a conda env such that we have bioimageio.core and sorted dependencies"""
 89        for req_channel in ("conda-forge", "nodefaults"):
 90            if req_channel not in self.channels:
 91                self.channels.append(req_channel)
 92
 93        if "defaults" in self.channels:
 94            warnings.warn("removing 'defaults' from conda-channels")
 95            self.channels.remove("defaults")
 96
 97        if "pip" not in self.dependencies:
 98            self.dependencies.append("pip")
 99
100        for dep in self.dependencies:
101            if isinstance(dep, PipDeps):
102                pip_section = dep
103                pip_section.pip.sort()
104                break
105        else:
106            pip_section = None
107
108        if (
109            pip_section is None
110            or not any(pd.startswith("bioimageio.core") for pd in pip_section.pip)
111        ) and not any(
112            d.startswith("bioimageio.core")
113            or d.startswith("conda-forge::bioimageio.core")
114            for d in self.dependencies
115            if not isinstance(d, PipDeps)
116        ):
117            self.dependencies.append("conda-forge::bioimageio.core")
118
119        self.dependencies.sort()
120        return self

A special CondaEnv that

  • automatically adds bioimageio specific dependencies
  • sorts dependencies
model_config: ClassVar[pydantic.config.ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def build_description( content: Mapping[str, YamlValueView], /, *, context: Optional[ValidationContext] = None, format_version: Union[Literal['latest', 'discover'], str] = 'discover') -> Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], InvalidDescr]:
175def build_description(
176    content: BioimageioYamlContentView,
177    /,
178    *,
179    context: Optional[ValidationContext] = None,
180    format_version: Union[FormatVersionPlaceholder, str] = DISCOVER,
181) -> Union[ResourceDescr, InvalidDescr]:
182    """build a bioimage.io resource description from an RDF's content.
183
184    Use `load_description` if you want to build a resource description from an rdf.yaml
185    or bioimage.io zip-package.
186
187    Args:
188        content: loaded rdf.yaml file (loaded with YAML, not bioimageio.spec)
189        context: validation context to use during validation
190        format_version:
191            (optional) use this argument to load the resource and
192            convert its metadata to a higher format_version.
193            Note:
194            - Use "latest" to convert to the latest available format version.
195            - Use "discover" to use the format version specified in the RDF.
196            - Only considers major.minor format version, ignores patch version.
197            - Conversion to lower format versions is not supported.
198
199    Returns:
200        An object holding all metadata of the bioimage.io resource
201
202    """
203
204    return build_description_impl(
205        content,
206        context=context,
207        format_version=format_version,
208        get_rd_class=_get_rd_class,
209    )

build a bioimage.io resource description from an RDF's content.

Use load_description if you want to build a resource description from an rdf.yaml or bioimage.io zip-package.

Arguments:
  • content: loaded rdf.yaml file (loaded with YAML, not bioimageio.spec)
  • context: validation context to use during validation
  • format_version: (optional) use this argument to load the resource and convert its metadata to a higher format_version. Note:
    • Use "latest" to convert to the latest available format version.
    • Use "discover" to use the format version specified in the RDF.
    • Only considers major.minor format version, ignores patch version.
    • Conversion to lower format versions is not supported.
Returns:

An object holding all metadata of the bioimage.io resource

class DatasetDescr(bioimageio.spec.generic.v0_3.GenericDescrBase):
 40class DatasetDescr(GenericDescrBase):
 41    """A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage
 42    processing.
 43    """
 44
 45    implemented_type: ClassVar[Literal["dataset"]] = "dataset"
 46    if TYPE_CHECKING:
 47        type: Literal["dataset"] = "dataset"
 48    else:
 49        type: Literal["dataset"]
 50
 51    id: Optional[DatasetId] = None
 52    """bioimage.io-wide unique resource identifier
 53    assigned by bioimage.io; version **un**specific."""
 54
 55    parent: Optional[DatasetId] = None
 56    """The description from which this one is derived"""
 57
 58    source: FAIR[Optional[HttpUrl]] = None
 59    """"URL to the source of the dataset."""
 60
 61    @model_validator(mode="before")
 62    @classmethod
 63    def _convert(cls, data: Dict[str, Any], /) -> Dict[str, Any]:
 64        if (
 65            data.get("type") == "dataset"
 66            and isinstance(fv := data.get("format_version"), str)
 67            and fv.startswith("0.2.")
 68        ):
 69            old = DatasetDescr02.load(data)
 70            if isinstance(old, InvalidDescr):
 71                return data
 72
 73            return cast(
 74                Dict[str, Any],
 75                (cls if TYPE_CHECKING else dict)(
 76                    attachments=(
 77                        []
 78                        if old.attachments is None
 79                        else [FileDescr(source=f) for f in old.attachments.files]
 80                    ),
 81                    authors=[_author_conv.convert_as_dict(a) for a in old.authors],  # pyright: ignore[reportArgumentType]
 82                    badges=old.badges,
 83                    cite=[
 84                        {"text": c.text, "doi": c.doi, "url": c.url} for c in old.cite
 85                    ],  # pyright: ignore[reportArgumentType]
 86                    config=old.config,  # pyright: ignore[reportArgumentType]
 87                    covers=old.covers,
 88                    description=old.description,
 89                    documentation=old.documentation,
 90                    format_version="0.3.0",
 91                    git_repo=old.git_repo,  # pyright: ignore[reportArgumentType]
 92                    icon=old.icon,
 93                    id=None if old.id is None else DatasetId(old.id),
 94                    license=old.license,  # type: ignore
 95                    links=old.links,
 96                    maintainers=[
 97                        _maintainer_conv.convert_as_dict(m) for m in old.maintainers
 98                    ],  # pyright: ignore[reportArgumentType]
 99                    name=old.name,
100                    source=old.source,
101                    tags=old.tags,
102                    type=old.type,
103                    uploader=old.uploader,
104                    version=old.version,
105                    **(old.model_extra or {}),
106                ),
107            )
108
109        return data

A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage processing.

implemented_type: ClassVar[Literal['dataset']] = 'dataset'

bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.

The description from which this one is derived

source: Annotated[Optional[bioimageio.spec._internal.url.HttpUrl], AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78952f5d00>, severity=35, msg=None, context=None)]

"URL to the source of the dataset.

implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 3, 0)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'forbid', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
def dump_description( rd: Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], InvalidDescr], /, *, exclude_unset: bool = True, exclude_defaults: bool = False) -> Dict[str, YamlValue]:
66def dump_description(
67    rd: Union[ResourceDescr, InvalidDescr],
68    /,
69    *,
70    exclude_unset: bool = True,
71    exclude_defaults: bool = False,
72) -> BioimageioYamlContent:
73    """Converts a resource to a dictionary containing only simple types that can directly be serialzed to YAML.
74
75    Args:
76        rd: bioimageio resource description
77        exclude_unset: Exclude fields that have not explicitly be set.
78        exclude_defaults: Exclude fields that have the default value (even if set explicitly).
79    """
80    return rd.model_dump(
81        mode="json", exclude_unset=exclude_unset, exclude_defaults=exclude_defaults
82    )

Converts a resource to a dictionary containing only simple types that can directly be serialzed to YAML.

Arguments:
  • rd: bioimageio resource description
  • exclude_unset: Exclude fields that have not explicitly be set.
  • exclude_defaults: Exclude fields that have the default value (even if set explicitly).
def enable_pretty_validation_errors_in_ipynb():
92def enable_pretty_validation_errors_in_ipynb():
93    """DEPRECATED; this is enabled by default at import time."""
94    warnings.warn(
95        "deprecated, this is enabled by default at import time.",
96        DeprecationWarning,
97        stacklevel=2,
98    )

DEPRECATED; this is enabled by default at import time.

class GenericDescr(bioimageio.spec.generic.v0_3.GenericDescrBase):
490class GenericDescr(GenericDescrBase, extra="ignore"):
491    """Specification of the fields used in a generic bioimage.io-compliant resource description file (RDF).
492
493    An RDF is a YAML file that describes a resource such as a model, a dataset, or a notebook.
494    Note that those resources are described with a type-specific RDF.
495    Use this generic resource description, if none of the known specific types matches your resource.
496    """
497
498    implemented_type: ClassVar[Literal["generic"]] = "generic"
499    if TYPE_CHECKING:
500        type: Annotated[str, LowerCase] = "generic"
501        """The resource type assigns a broad category to the resource."""
502    else:
503        type: Annotated[str, LowerCase]
504        """The resource type assigns a broad category to the resource."""
505
506    id: Optional[
507        Annotated[ResourceId, Field(examples=["affable-shark", "ambitious-sloth"])]
508    ] = None
509    """bioimage.io-wide unique resource identifier
510    assigned by bioimage.io; version **un**specific."""
511
512    parent: Optional[ResourceId] = None
513    """The description from which this one is derived"""
514
515    source: Optional[HttpUrl] = None
516    """The primary source of the resource"""
517
518    @field_validator("type", mode="after")
519    @classmethod
520    def check_specific_types(cls, value: str) -> str:
521        if value in KNOWN_SPECIFIC_RESOURCE_TYPES:
522            raise ValueError(
523                f"Use the {value} description instead of this generic description for"
524                + f" your '{value}' resource."
525            )
526
527        return value

Specification of the fields used in a generic bioimage.io-compliant resource description file (RDF).

An RDF is a YAML file that describes a resource such as a model, a dataset, or a notebook. Note that those resources are described with a type-specific RDF. Use this generic resource description, if none of the known specific types matches your resource.

implemented_type: ClassVar[Literal['generic']] = 'generic'
id: Optional[Annotated[bioimageio.spec.generic.v0_3.ResourceId, FieldInfo(annotation=NoneType, required=True, examples=['affable-shark', 'ambitious-sloth'])]]

bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.

The description from which this one is derived

The primary source of the resource

@field_validator('type', mode='after')
@classmethod
def check_specific_types(cls, value: str) -> str:
518    @field_validator("type", mode="after")
519    @classmethod
520    def check_specific_types(cls, value: str) -> str:
521        if value in KNOWN_SPECIFIC_RESOURCE_TYPES:
522            raise ValueError(
523                f"Use the {value} description instead of this generic description for"
524                + f" your '{value}' resource."
525            )
526
527        return value
implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 3, 0)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'ignore', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
27def get_conda_env(
28    *,
29    entry: SupportedWeightsEntry,
30    env_name: Optional[Union[Literal["DROP"], str]] = None,
31) -> BioimageioCondaEnv:
32    """get the recommended Conda environment for a given weights entry description"""
33    if isinstance(entry, (v0_4.OnnxWeightsDescr, v0_5.OnnxWeightsDescr)):
34        conda_env = _get_default_onnx_env(opset_version=entry.opset_version)
35    elif isinstance(
36        entry,
37        (
38            v0_4.PytorchStateDictWeightsDescr,
39            v0_5.PytorchStateDictWeightsDescr,
40            v0_4.TorchscriptWeightsDescr,
41            v0_5.TorchscriptWeightsDescr,
42        ),
43    ):
44        if (
45            isinstance(entry, v0_5.TorchscriptWeightsDescr)
46            or entry.dependencies is None
47        ):
48            conda_env = _get_default_pytorch_env(pytorch_version=entry.pytorch_version)
49        else:
50            conda_env = _get_env_from_deps(entry.dependencies)
51
52    elif isinstance(
53        entry,
54        (
55            v0_4.TensorflowSavedModelBundleWeightsDescr,
56            v0_5.TensorflowSavedModelBundleWeightsDescr,
57        ),
58    ):
59        if entry.dependencies is None:
60            conda_env = _get_default_tf_env(tensorflow_version=entry.tensorflow_version)
61        else:
62            conda_env = _get_env_from_deps(entry.dependencies)
63    elif isinstance(
64        entry,
65        (v0_4.KerasHdf5WeightsDescr, v0_5.KerasHdf5WeightsDescr),
66    ):
67        conda_env = _get_default_tf_env(tensorflow_version=entry.tensorflow_version)
68    else:
69        assert_never(entry)
70
71    if env_name == "DROP":
72        conda_env.name = None
73    elif env_name is not None:
74        conda_env.name = env_name
75
76    return conda_env

get the recommended Conda environment for a given weights entry description

def get_resource_package_content( rd: Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]], /, *, bioimageio_yaml_file_name: str = 'rdf.yaml', weights_priority_order: Optional[Sequence[Literal['keras_hdf5', 'onnx', 'pytorch_state_dict', 'tensorflow_js', 'tensorflow_saved_model_bundle', 'torchscript']]] = None) -> Dict[str, Union[bioimageio.spec._internal.url.HttpUrl, Annotated[pathlib.Path, PathType(path_type='file'), Predicate(is_absolute), FieldInfo(annotation=NoneType, required=True, title='AbsoluteFilePath')], Dict[str, YamlValue], zipp.Path]]:
40def get_resource_package_content(
41    rd: ResourceDescr,
42    /,
43    *,
44    bioimageio_yaml_file_name: FileName = BIOIMAGEIO_YAML,
45    weights_priority_order: Optional[Sequence[WeightsFormat]] = None,  # model only
46) -> Dict[FileName, Union[HttpUrl, AbsoluteFilePath, BioimageioYamlContent, ZipPath]]:
47    ret: Dict[
48        FileName, Union[HttpUrl, AbsoluteFilePath, BioimageioYamlContent, ZipPath]
49    ] = {}
50    for k, v in get_package_content(
51        rd,
52        bioimageio_yaml_file_name=bioimageio_yaml_file_name,
53        weights_priority_order=weights_priority_order,
54    ).items():
55        if isinstance(v, FileDescr):
56            if isinstance(v.source, (Path, RelativeFilePath)):
57                ret[k] = v.source.absolute()
58            else:
59                ret[k] = v.source
60
61        else:
62            ret[k] = v
63
64    return ret
def get_validation_context( default: Optional[ValidationContext] = None) -> ValidationContext:
209def get_validation_context(
210    default: Optional[ValidationContext] = None,
211) -> ValidationContext:
212    """Get the currently active validation context (or a default)"""
213    return _validation_context_var.get() or default or ValidationContext()

Get the currently active validation context (or a default)

392class InvalidDescr(
393    ResourceDescrBase,
394    extra="allow",
395    title="An invalid resource description",
396):
397    """A representation of an invalid resource description"""
398
399    implemented_type: ClassVar[Literal["unknown"]] = "unknown"
400    if TYPE_CHECKING:  # see NodeWithExplicitlySetFields
401        type: Any = "unknown"
402    else:
403        type: Any
404
405    implemented_format_version: ClassVar[Literal["unknown"]] = "unknown"
406    if TYPE_CHECKING:  # see NodeWithExplicitlySetFields
407        format_version: Any = "unknown"
408    else:
409        format_version: Any

A representation of an invalid resource description

implemented_type: ClassVar[Literal['unknown']] = 'unknown'
implemented_format_version: ClassVar[Literal['unknown']] = 'unknown'
implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 0, 0)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'allow', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True, 'title': 'An invalid resource description'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
LatestResourceDescr = typing.Union[typing.Annotated[typing.Union[ApplicationDescr, DatasetDescr, ModelDescr, NotebookDescr], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], GenericDescr]
def load_dataset_description( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile], /, *, format_version: Union[Literal['latest', 'discover'], str] = 'discover', perform_io_checks: Optional[bool] = None, known_files: Optional[Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]]] = None, sha256: Optional[bioimageio.spec._internal.io_basics.Sha256] = None) -> Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')]:
191def load_dataset_description(
192    source: Union[PermissiveFileSource, ZipFile],
193    /,
194    *,
195    format_version: Union[FormatVersionPlaceholder, str] = DISCOVER,
196    perform_io_checks: Optional[bool] = None,
197    known_files: Optional[Dict[str, Optional[Sha256]]] = None,
198    sha256: Optional[Sha256] = None,
199) -> AnyDatasetDescr:
200    """same as `load_description`, but addtionally ensures that the loaded
201    description is valid and of type 'dataset'.
202    """
203    rd = load_description(
204        source,
205        format_version=format_version,
206        perform_io_checks=perform_io_checks,
207        known_files=known_files,
208        sha256=sha256,
209    )
210    return ensure_description_is_dataset(rd)

same as load_description, but addtionally ensures that the loaded description is valid and of type 'dataset'.

def load_description_and_validate_format_only( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile], /, *, format_version: Union[Literal['latest', 'discover'], str] = 'discover', perform_io_checks: Optional[bool] = None, known_files: Optional[Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]]] = None, sha256: Optional[bioimageio.spec._internal.io_basics.Sha256] = None) -> ValidationSummary:
243def load_description_and_validate_format_only(
244    source: Union[PermissiveFileSource, ZipFile],
245    /,
246    *,
247    format_version: Union[FormatVersionPlaceholder, str] = DISCOVER,
248    perform_io_checks: Optional[bool] = None,
249    known_files: Optional[Dict[str, Optional[Sha256]]] = None,
250    sha256: Optional[Sha256] = None,
251) -> ValidationSummary:
252    """same as `load_description`, but only return the validation summary.
253
254    Returns:
255        Validation summary of the bioimage.io resource found at `source`.
256
257    """
258    rd = load_description(
259        source,
260        format_version=format_version,
261        perform_io_checks=perform_io_checks,
262        known_files=known_files,
263        sha256=sha256,
264    )
265    assert rd.validation_summary is not None
266    return rd.validation_summary

same as load_description, but only return the validation summary.

Returns:

Validation summary of the bioimage.io resource found at source.

def load_description( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile], /, *, format_version: Union[Literal['latest', 'discover'], str] = 'discover', perform_io_checks: Optional[bool] = None, known_files: Optional[Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]]] = None, sha256: Optional[bioimageio.spec._internal.io_basics.Sha256] = None) -> Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], InvalidDescr]:
 57def load_description(
 58    source: Union[PermissiveFileSource, ZipFile],
 59    /,
 60    *,
 61    format_version: Union[FormatVersionPlaceholder, str] = DISCOVER,
 62    perform_io_checks: Optional[bool] = None,
 63    known_files: Optional[Dict[str, Optional[Sha256]]] = None,
 64    sha256: Optional[Sha256] = None,
 65) -> Union[ResourceDescr, InvalidDescr]:
 66    """load a bioimage.io resource description
 67
 68    Args:
 69        source:
 70            Path or URL to an rdf.yaml or a bioimage.io package
 71            (zip-file with rdf.yaml in it).
 72        format_version:
 73            (optional) Use this argument to load the resource and
 74            convert its metadata to a higher format_version.
 75            Note:
 76            - Use "latest" to convert to the latest available format version.
 77            - Use "discover" to use the format version specified in the RDF.
 78            - Only considers major.minor format version, ignores patch version.
 79            - Conversion to lower format versions is not supported.
 80        perform_io_checks:
 81            Wether or not to perform validation that requires file io,
 82            e.g. downloading a remote files. The existence of local
 83            absolute file paths is still being checked.
 84        known_files:
 85            Allows to bypass download and hashing of referenced files
 86            (even if perform_io_checks is True).
 87            Checked files will be added to this dictionary
 88            with their SHA-256 value.
 89        sha256:
 90            Optional SHA-256 value of **source**
 91
 92    Returns:
 93        An object holding all metadata of the bioimage.io resource
 94
 95    """
 96    if isinstance(source, ResourceDescrBase):
 97        name = getattr(source, "name", f"{str(source)[:10]}...")
 98        logger.warning("returning already loaded description '{}' as is", name)
 99        return source  # pyright: ignore[reportReturnType]
100
101    opened = open_bioimageio_yaml(source, sha256=sha256)
102
103    context = get_validation_context().replace(
104        root=opened.original_root,
105        file_name=opened.original_file_name,
106        original_source_name=opened.original_source_name,
107        perform_io_checks=perform_io_checks,
108        known_files=known_files,
109    )
110
111    return build_description(
112        opened.content,
113        context=context,
114        format_version=format_version,
115    )

load a bioimage.io resource description

Arguments:
  • source: Path or URL to an rdf.yaml or a bioimage.io package (zip-file with rdf.yaml in it).
  • format_version: (optional) Use this argument to load the resource and convert its metadata to a higher format_version. Note:
    • Use "latest" to convert to the latest available format version.
    • Use "discover" to use the format version specified in the RDF.
    • Only considers major.minor format version, ignores patch version.
    • Conversion to lower format versions is not supported.
  • perform_io_checks: Wether or not to perform validation that requires file io, e.g. downloading a remote files. The existence of local absolute file paths is still being checked.
  • known_files: Allows to bypass download and hashing of referenced files (even if perform_io_checks is True). Checked files will be added to this dictionary with their SHA-256 value.
  • sha256: Optional SHA-256 value of source
Returns:

An object holding all metadata of the bioimage.io resource

def load_model_description( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile], /, *, format_version: Union[Literal['latest', 'discover'], str] = 'discover', perform_io_checks: Optional[bool] = None, known_files: Optional[Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]]] = None, sha256: Optional[bioimageio.spec._internal.io_basics.Sha256] = None) -> Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')]:
142def load_model_description(
143    source: Union[PermissiveFileSource, ZipFile],
144    /,
145    *,
146    format_version: Union[FormatVersionPlaceholder, str] = DISCOVER,
147    perform_io_checks: Optional[bool] = None,
148    known_files: Optional[Dict[str, Optional[Sha256]]] = None,
149    sha256: Optional[Sha256] = None,
150) -> AnyModelDescr:
151    """same as `load_description`, but addtionally ensures that the loaded
152    description is valid and of type 'model'.
153
154    Raises:
155        ValueError: for invalid or non-model resources
156    """
157    rd = load_description(
158        source,
159        format_version=format_version,
160        perform_io_checks=perform_io_checks,
161        known_files=known_files,
162        sha256=sha256,
163    )
164    return ensure_description_is_model(rd)

same as load_description, but addtionally ensures that the loaded description is valid and of type 'model'.

Raises:
  • ValueError: for invalid or non-model resources
2610class ModelDescr(GenericModelDescrBase):
2611    """Specification of the fields used in a bioimage.io-compliant RDF to describe AI models with pretrained weights.
2612    These fields are typically stored in a YAML file which we call a model resource description file (model RDF).
2613    """
2614
2615    implemented_format_version: ClassVar[Literal["0.5.5"]] = "0.5.5"
2616    if TYPE_CHECKING:
2617        format_version: Literal["0.5.5"] = "0.5.5"
2618    else:
2619        format_version: Literal["0.5.5"]
2620        """Version of the bioimage.io model description specification used.
2621        When creating a new model always use the latest micro/patch version described here.
2622        The `format_version` is important for any consumer software to understand how to parse the fields.
2623        """
2624
2625    implemented_type: ClassVar[Literal["model"]] = "model"
2626    if TYPE_CHECKING:
2627        type: Literal["model"] = "model"
2628    else:
2629        type: Literal["model"]
2630        """Specialized resource type 'model'"""
2631
2632    id: Optional[ModelId] = None
2633    """bioimage.io-wide unique resource identifier
2634    assigned by bioimage.io; version **un**specific."""
2635
2636    authors: FAIR[List[Author]] = Field(
2637        default_factory=cast(Callable[[], List[Author]], list)
2638    )
2639    """The authors are the creators of the model RDF and the primary points of contact."""
2640
2641    documentation: FAIR[Optional[FileSource_documentation]] = None
2642    """URL or relative path to a markdown file with additional documentation.
2643    The recommended documentation file name is `README.md`. An `.md` suffix is mandatory.
2644    The documentation should include a '#[#] Validation' (sub)section
2645    with details on how to quantitatively validate the model on unseen data."""
2646
2647    @field_validator("documentation", mode="after")
2648    @classmethod
2649    def _validate_documentation(
2650        cls, value: Optional[FileSource_documentation]
2651    ) -> Optional[FileSource_documentation]:
2652        if not get_validation_context().perform_io_checks or value is None:
2653            return value
2654
2655        doc_reader = get_reader(value)
2656        doc_content = doc_reader.read().decode(encoding="utf-8")
2657        if not re.search("#.*[vV]alidation", doc_content):
2658            issue_warning(
2659                "No '# Validation' (sub)section found in {value}.",
2660                value=value,
2661                field="documentation",
2662            )
2663
2664        return value
2665
2666    inputs: NotEmpty[Sequence[InputTensorDescr]]
2667    """Describes the input tensors expected by this model."""
2668
2669    @field_validator("inputs", mode="after")
2670    @classmethod
2671    def _validate_input_axes(
2672        cls, inputs: Sequence[InputTensorDescr]
2673    ) -> Sequence[InputTensorDescr]:
2674        input_size_refs = cls._get_axes_with_independent_size(inputs)
2675
2676        for i, ipt in enumerate(inputs):
2677            valid_independent_refs: Dict[
2678                Tuple[TensorId, AxisId],
2679                Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]],
2680            ] = {
2681                **{
2682                    (ipt.id, a.id): (ipt, a, a.size)
2683                    for a in ipt.axes
2684                    if not isinstance(a, BatchAxis)
2685                    and isinstance(a.size, (int, ParameterizedSize))
2686                },
2687                **input_size_refs,
2688            }
2689            for a, ax in enumerate(ipt.axes):
2690                cls._validate_axis(
2691                    "inputs",
2692                    i=i,
2693                    tensor_id=ipt.id,
2694                    a=a,
2695                    axis=ax,
2696                    valid_independent_refs=valid_independent_refs,
2697                )
2698        return inputs
2699
2700    @staticmethod
2701    def _validate_axis(
2702        field_name: str,
2703        i: int,
2704        tensor_id: TensorId,
2705        a: int,
2706        axis: AnyAxis,
2707        valid_independent_refs: Dict[
2708            Tuple[TensorId, AxisId],
2709            Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]],
2710        ],
2711    ):
2712        if isinstance(axis, BatchAxis) or isinstance(
2713            axis.size, (int, ParameterizedSize, DataDependentSize)
2714        ):
2715            return
2716        elif not isinstance(axis.size, SizeReference):
2717            assert_never(axis.size)
2718
2719        # validate axis.size SizeReference
2720        ref = (axis.size.tensor_id, axis.size.axis_id)
2721        if ref not in valid_independent_refs:
2722            raise ValueError(
2723                "Invalid tensor axis reference at"
2724                + f" {field_name}[{i}].axes[{a}].size: {axis.size}."
2725            )
2726        if ref == (tensor_id, axis.id):
2727            raise ValueError(
2728                "Self-referencing not allowed for"
2729                + f" {field_name}[{i}].axes[{a}].size: {axis.size}"
2730            )
2731        if axis.type == "channel":
2732            if valid_independent_refs[ref][1].type != "channel":
2733                raise ValueError(
2734                    "A channel axis' size may only reference another fixed size"
2735                    + " channel axis."
2736                )
2737            if isinstance(axis.channel_names, str) and "{i}" in axis.channel_names:
2738                ref_size = valid_independent_refs[ref][2]
2739                assert isinstance(ref_size, int), (
2740                    "channel axis ref (another channel axis) has to specify fixed"
2741                    + " size"
2742                )
2743                generated_channel_names = [
2744                    Identifier(axis.channel_names.format(i=i))
2745                    for i in range(1, ref_size + 1)
2746                ]
2747                axis.channel_names = generated_channel_names
2748
2749        if (ax_unit := getattr(axis, "unit", None)) != (
2750            ref_unit := getattr(valid_independent_refs[ref][1], "unit", None)
2751        ):
2752            raise ValueError(
2753                "The units of an axis and its reference axis need to match, but"
2754                + f" '{ax_unit}' != '{ref_unit}'."
2755            )
2756        ref_axis = valid_independent_refs[ref][1]
2757        if isinstance(ref_axis, BatchAxis):
2758            raise ValueError(
2759                f"Invalid reference axis '{ref_axis.id}' for {tensor_id}.{axis.id}"
2760                + " (a batch axis is not allowed as reference)."
2761            )
2762
2763        if isinstance(axis, WithHalo):
2764            min_size = axis.size.get_size(axis, ref_axis, n=0)
2765            if (min_size - 2 * axis.halo) < 1:
2766                raise ValueError(
2767                    f"axis {axis.id} with minimum size {min_size} is too small for halo"
2768                    + f" {axis.halo}."
2769                )
2770
2771            input_halo = axis.halo * axis.scale / ref_axis.scale
2772            if input_halo != int(input_halo) or input_halo % 2 == 1:
2773                raise ValueError(
2774                    f"input_halo {input_halo} (output_halo {axis.halo} *"
2775                    + f" output_scale {axis.scale} / input_scale {ref_axis.scale})"
2776                    + f"     {tensor_id}.{axis.id}."
2777                )
2778
2779    @model_validator(mode="after")
2780    def _validate_test_tensors(self) -> Self:
2781        if not get_validation_context().perform_io_checks:
2782            return self
2783
2784        test_output_arrays = [
2785            None if descr.test_tensor is None else load_array(descr.test_tensor)
2786            for descr in self.outputs
2787        ]
2788        test_input_arrays = [
2789            None if descr.test_tensor is None else load_array(descr.test_tensor)
2790            for descr in self.inputs
2791        ]
2792
2793        tensors = {
2794            descr.id: (descr, array)
2795            for descr, array in zip(
2796                chain(self.inputs, self.outputs), test_input_arrays + test_output_arrays
2797            )
2798        }
2799        validate_tensors(tensors, tensor_origin="test_tensor")
2800
2801        output_arrays = {
2802            descr.id: array for descr, array in zip(self.outputs, test_output_arrays)
2803        }
2804        for rep_tol in self.config.bioimageio.reproducibility_tolerance:
2805            if not rep_tol.absolute_tolerance:
2806                continue
2807
2808            if rep_tol.output_ids:
2809                out_arrays = {
2810                    oid: a
2811                    for oid, a in output_arrays.items()
2812                    if oid in rep_tol.output_ids
2813                }
2814            else:
2815                out_arrays = output_arrays
2816
2817            for out_id, array in out_arrays.items():
2818                if array is None:
2819                    continue
2820
2821                if rep_tol.absolute_tolerance > (max_test_value := array.max()) * 0.01:
2822                    raise ValueError(
2823                        "config.bioimageio.reproducibility_tolerance.absolute_tolerance="
2824                        + f"{rep_tol.absolute_tolerance} > 0.01*{max_test_value}"
2825                        + f" (1% of the maximum value of the test tensor '{out_id}')"
2826                    )
2827
2828        return self
2829
2830    @model_validator(mode="after")
2831    def _validate_tensor_references_in_proc_kwargs(self, info: ValidationInfo) -> Self:
2832        ipt_refs = {t.id for t in self.inputs}
2833        out_refs = {t.id for t in self.outputs}
2834        for ipt in self.inputs:
2835            for p in ipt.preprocessing:
2836                ref = p.kwargs.get("reference_tensor")
2837                if ref is None:
2838                    continue
2839                if ref not in ipt_refs:
2840                    raise ValueError(
2841                        f"`reference_tensor` '{ref}' not found. Valid input tensor"
2842                        + f" references are: {ipt_refs}."
2843                    )
2844
2845        for out in self.outputs:
2846            for p in out.postprocessing:
2847                ref = p.kwargs.get("reference_tensor")
2848                if ref is None:
2849                    continue
2850
2851                if ref not in ipt_refs and ref not in out_refs:
2852                    raise ValueError(
2853                        f"`reference_tensor` '{ref}' not found. Valid tensor references"
2854                        + f" are: {ipt_refs | out_refs}."
2855                    )
2856
2857        return self
2858
2859    # TODO: use validate funcs in validate_test_tensors
2860    # def validate_inputs(self, input_tensors: Mapping[TensorId, NDArray[Any]]) -> Mapping[TensorId, NDArray[Any]]:
2861
2862    name: Annotated[
2863        str,
2864        RestrictCharacters(string.ascii_letters + string.digits + "_+- ()"),
2865        MinLen(5),
2866        MaxLen(128),
2867        warn(MaxLen(64), "Name longer than 64 characters.", INFO),
2868    ]
2869    """A human-readable name of this model.
2870    It should be no longer than 64 characters
2871    and may only contain letter, number, underscore, minus, parentheses and spaces.
2872    We recommend to chose a name that refers to the model's task and image modality.
2873    """
2874
2875    outputs: NotEmpty[Sequence[OutputTensorDescr]]
2876    """Describes the output tensors."""
2877
2878    @field_validator("outputs", mode="after")
2879    @classmethod
2880    def _validate_tensor_ids(
2881        cls, outputs: Sequence[OutputTensorDescr], info: ValidationInfo
2882    ) -> Sequence[OutputTensorDescr]:
2883        tensor_ids = [
2884            t.id for t in info.data.get("inputs", []) + info.data.get("outputs", [])
2885        ]
2886        duplicate_tensor_ids: List[str] = []
2887        seen: Set[str] = set()
2888        for t in tensor_ids:
2889            if t in seen:
2890                duplicate_tensor_ids.append(t)
2891
2892            seen.add(t)
2893
2894        if duplicate_tensor_ids:
2895            raise ValueError(f"Duplicate tensor ids: {duplicate_tensor_ids}")
2896
2897        return outputs
2898
2899    @staticmethod
2900    def _get_axes_with_parameterized_size(
2901        io: Union[Sequence[InputTensorDescr], Sequence[OutputTensorDescr]],
2902    ):
2903        return {
2904            f"{t.id}.{a.id}": (t, a, a.size)
2905            for t in io
2906            for a in t.axes
2907            if not isinstance(a, BatchAxis) and isinstance(a.size, ParameterizedSize)
2908        }
2909
2910    @staticmethod
2911    def _get_axes_with_independent_size(
2912        io: Union[Sequence[InputTensorDescr], Sequence[OutputTensorDescr]],
2913    ):
2914        return {
2915            (t.id, a.id): (t, a, a.size)
2916            for t in io
2917            for a in t.axes
2918            if not isinstance(a, BatchAxis)
2919            and isinstance(a.size, (int, ParameterizedSize))
2920        }
2921
2922    @field_validator("outputs", mode="after")
2923    @classmethod
2924    def _validate_output_axes(
2925        cls, outputs: List[OutputTensorDescr], info: ValidationInfo
2926    ) -> List[OutputTensorDescr]:
2927        input_size_refs = cls._get_axes_with_independent_size(
2928            info.data.get("inputs", [])
2929        )
2930        output_size_refs = cls._get_axes_with_independent_size(outputs)
2931
2932        for i, out in enumerate(outputs):
2933            valid_independent_refs: Dict[
2934                Tuple[TensorId, AxisId],
2935                Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]],
2936            ] = {
2937                **{
2938                    (out.id, a.id): (out, a, a.size)
2939                    for a in out.axes
2940                    if not isinstance(a, BatchAxis)
2941                    and isinstance(a.size, (int, ParameterizedSize))
2942                },
2943                **input_size_refs,
2944                **output_size_refs,
2945            }
2946            for a, ax in enumerate(out.axes):
2947                cls._validate_axis(
2948                    "outputs",
2949                    i,
2950                    out.id,
2951                    a,
2952                    ax,
2953                    valid_independent_refs=valid_independent_refs,
2954                )
2955
2956        return outputs
2957
2958    packaged_by: List[Author] = Field(
2959        default_factory=cast(Callable[[], List[Author]], list)
2960    )
2961    """The persons that have packaged and uploaded this model.
2962    Only required if those persons differ from the `authors`."""
2963
2964    parent: Optional[LinkedModel] = None
2965    """The model from which this model is derived, e.g. by fine-tuning the weights."""
2966
2967    @model_validator(mode="after")
2968    def _validate_parent_is_not_self(self) -> Self:
2969        if self.parent is not None and self.parent.id == self.id:
2970            raise ValueError("A model description may not reference itself as parent.")
2971
2972        return self
2973
2974    run_mode: Annotated[
2975        Optional[RunMode],
2976        warn(None, "Run mode '{value}' has limited support across consumer softwares."),
2977    ] = None
2978    """Custom run mode for this model: for more complex prediction procedures like test time
2979    data augmentation that currently cannot be expressed in the specification.
2980    No standard run modes are defined yet."""
2981
2982    timestamp: Datetime = Field(default_factory=Datetime.now)
2983    """Timestamp in [ISO 8601](#https://en.wikipedia.org/wiki/ISO_8601) format
2984    with a few restrictions listed [here](https://docs.python.org/3/library/datetime.html#datetime.datetime.fromisoformat).
2985    (In Python a datetime object is valid, too)."""
2986
2987    training_data: Annotated[
2988        Union[None, LinkedDataset, DatasetDescr, DatasetDescr02],
2989        Field(union_mode="left_to_right"),
2990    ] = None
2991    """The dataset used to train this model"""
2992
2993    weights: Annotated[WeightsDescr, WrapSerializer(package_weights)]
2994    """The weights for this model.
2995    Weights can be given for different formats, but should otherwise be equivalent.
2996    The available weight formats determine which consumers can use this model."""
2997
2998    config: Config = Field(default_factory=Config.model_construct)
2999
3000    @model_validator(mode="after")
3001    def _add_default_cover(self) -> Self:
3002        if not get_validation_context().perform_io_checks or self.covers:
3003            return self
3004
3005        try:
3006            generated_covers = generate_covers(
3007                [
3008                    (t, load_array(t.test_tensor))
3009                    for t in self.inputs
3010                    if t.test_tensor is not None
3011                ],
3012                [
3013                    (t, load_array(t.test_tensor))
3014                    for t in self.outputs
3015                    if t.test_tensor is not None
3016                ],
3017            )
3018        except Exception as e:
3019            issue_warning(
3020                "Failed to generate cover image(s): {e}",
3021                value=self.covers,
3022                msg_context=dict(e=e),
3023                field="covers",
3024            )
3025        else:
3026            self.covers.extend(generated_covers)
3027
3028        return self
3029
3030    def get_input_test_arrays(self) -> List[NDArray[Any]]:
3031        return self._get_test_arrays(self.inputs)
3032
3033    def get_output_test_arrays(self) -> List[NDArray[Any]]:
3034        return self._get_test_arrays(self.outputs)
3035
3036    @staticmethod
3037    def _get_test_arrays(
3038        io_descr: Union[Sequence[InputTensorDescr], Sequence[OutputTensorDescr]],
3039    ):
3040        ts: List[FileDescr] = []
3041        for d in io_descr:
3042            if d.test_tensor is None:
3043                raise ValueError(
3044                    f"Failed to get test arrays: description of '{d.id}' is missing a `test_tensor`."
3045                )
3046            ts.append(d.test_tensor)
3047
3048        data = [load_array(t) for t in ts]
3049        assert all(isinstance(d, np.ndarray) for d in data)
3050        return data
3051
3052    @staticmethod
3053    def get_batch_size(tensor_sizes: Mapping[TensorId, Mapping[AxisId, int]]) -> int:
3054        batch_size = 1
3055        tensor_with_batchsize: Optional[TensorId] = None
3056        for tid in tensor_sizes:
3057            for aid, s in tensor_sizes[tid].items():
3058                if aid != BATCH_AXIS_ID or s == 1 or s == batch_size:
3059                    continue
3060
3061                if batch_size != 1:
3062                    assert tensor_with_batchsize is not None
3063                    raise ValueError(
3064                        f"batch size mismatch for tensors '{tensor_with_batchsize}' ({batch_size}) and '{tid}' ({s})"
3065                    )
3066
3067                batch_size = s
3068                tensor_with_batchsize = tid
3069
3070        return batch_size
3071
3072    def get_output_tensor_sizes(
3073        self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]
3074    ) -> Dict[TensorId, Dict[AxisId, Union[int, _DataDepSize]]]:
3075        """Returns the tensor output sizes for given **input_sizes**.
3076        Only if **input_sizes** has a valid input shape, the tensor output size is exact.
3077        Otherwise it might be larger than the actual (valid) output"""
3078        batch_size = self.get_batch_size(input_sizes)
3079        ns = self.get_ns(input_sizes)
3080
3081        tensor_sizes = self.get_tensor_sizes(ns, batch_size=batch_size)
3082        return tensor_sizes.outputs
3083
3084    def get_ns(self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]):
3085        """get parameter `n` for each parameterized axis
3086        such that the valid input size is >= the given input size"""
3087        ret: Dict[Tuple[TensorId, AxisId], ParameterizedSize_N] = {}
3088        axes = {t.id: {a.id: a for a in t.axes} for t in self.inputs}
3089        for tid in input_sizes:
3090            for aid, s in input_sizes[tid].items():
3091                size_descr = axes[tid][aid].size
3092                if isinstance(size_descr, ParameterizedSize):
3093                    ret[(tid, aid)] = size_descr.get_n(s)
3094                elif size_descr is None or isinstance(size_descr, (int, SizeReference)):
3095                    pass
3096                else:
3097                    assert_never(size_descr)
3098
3099        return ret
3100
3101    def get_tensor_sizes(
3102        self, ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], batch_size: int
3103    ) -> _TensorSizes:
3104        axis_sizes = self.get_axis_sizes(ns, batch_size=batch_size)
3105        return _TensorSizes(
3106            {
3107                t: {
3108                    aa: axis_sizes.inputs[(tt, aa)]
3109                    for tt, aa in axis_sizes.inputs
3110                    if tt == t
3111                }
3112                for t in {tt for tt, _ in axis_sizes.inputs}
3113            },
3114            {
3115                t: {
3116                    aa: axis_sizes.outputs[(tt, aa)]
3117                    for tt, aa in axis_sizes.outputs
3118                    if tt == t
3119                }
3120                for t in {tt for tt, _ in axis_sizes.outputs}
3121            },
3122        )
3123
3124    def get_axis_sizes(
3125        self,
3126        ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N],
3127        batch_size: Optional[int] = None,
3128        *,
3129        max_input_shape: Optional[Mapping[Tuple[TensorId, AxisId], int]] = None,
3130    ) -> _AxisSizes:
3131        """Determine input and output block shape for scale factors **ns**
3132        of parameterized input sizes.
3133
3134        Args:
3135            ns: Scale factor `n` for each axis (keyed by (tensor_id, axis_id))
3136                that is parameterized as `size = min + n * step`.
3137            batch_size: The desired size of the batch dimension.
3138                If given **batch_size** overwrites any batch size present in
3139                **max_input_shape**. Default 1.
3140            max_input_shape: Limits the derived block shapes.
3141                Each axis for which the input size, parameterized by `n`, is larger
3142                than **max_input_shape** is set to the minimal value `n_min` for which
3143                this is still true.
3144                Use this for small input samples or large values of **ns**.
3145                Or simply whenever you know the full input shape.
3146
3147        Returns:
3148            Resolved axis sizes for model inputs and outputs.
3149        """
3150        max_input_shape = max_input_shape or {}
3151        if batch_size is None:
3152            for (_t_id, a_id), s in max_input_shape.items():
3153                if a_id == BATCH_AXIS_ID:
3154                    batch_size = s
3155                    break
3156            else:
3157                batch_size = 1
3158
3159        all_axes = {
3160            t.id: {a.id: a for a in t.axes} for t in chain(self.inputs, self.outputs)
3161        }
3162
3163        inputs: Dict[Tuple[TensorId, AxisId], int] = {}
3164        outputs: Dict[Tuple[TensorId, AxisId], Union[int, _DataDepSize]] = {}
3165
3166        def get_axis_size(a: Union[InputAxis, OutputAxis]):
3167            if isinstance(a, BatchAxis):
3168                if (t_descr.id, a.id) in ns:
3169                    logger.warning(
3170                        "Ignoring unexpected size increment factor (n) for batch axis"
3171                        + " of tensor '{}'.",
3172                        t_descr.id,
3173                    )
3174                return batch_size
3175            elif isinstance(a.size, int):
3176                if (t_descr.id, a.id) in ns:
3177                    logger.warning(
3178                        "Ignoring unexpected size increment factor (n) for fixed size"
3179                        + " axis '{}' of tensor '{}'.",
3180                        a.id,
3181                        t_descr.id,
3182                    )
3183                return a.size
3184            elif isinstance(a.size, ParameterizedSize):
3185                if (t_descr.id, a.id) not in ns:
3186                    raise ValueError(
3187                        "Size increment factor (n) missing for parametrized axis"
3188                        + f" '{a.id}' of tensor '{t_descr.id}'."
3189                    )
3190                n = ns[(t_descr.id, a.id)]
3191                s_max = max_input_shape.get((t_descr.id, a.id))
3192                if s_max is not None:
3193                    n = min(n, a.size.get_n(s_max))
3194
3195                return a.size.get_size(n)
3196
3197            elif isinstance(a.size, SizeReference):
3198                if (t_descr.id, a.id) in ns:
3199                    logger.warning(
3200                        "Ignoring unexpected size increment factor (n) for axis '{}'"
3201                        + " of tensor '{}' with size reference.",
3202                        a.id,
3203                        t_descr.id,
3204                    )
3205                assert not isinstance(a, BatchAxis)
3206                ref_axis = all_axes[a.size.tensor_id][a.size.axis_id]
3207                assert not isinstance(ref_axis, BatchAxis)
3208                ref_key = (a.size.tensor_id, a.size.axis_id)
3209                ref_size = inputs.get(ref_key, outputs.get(ref_key))
3210                assert ref_size is not None, ref_key
3211                assert not isinstance(ref_size, _DataDepSize), ref_key
3212                return a.size.get_size(
3213                    axis=a,
3214                    ref_axis=ref_axis,
3215                    ref_size=ref_size,
3216                )
3217            elif isinstance(a.size, DataDependentSize):
3218                if (t_descr.id, a.id) in ns:
3219                    logger.warning(
3220                        "Ignoring unexpected increment factor (n) for data dependent"
3221                        + " size axis '{}' of tensor '{}'.",
3222                        a.id,
3223                        t_descr.id,
3224                    )
3225                return _DataDepSize(a.size.min, a.size.max)
3226            else:
3227                assert_never(a.size)
3228
3229        # first resolve all , but the `SizeReference` input sizes
3230        for t_descr in self.inputs:
3231            for a in t_descr.axes:
3232                if not isinstance(a.size, SizeReference):
3233                    s = get_axis_size(a)
3234                    assert not isinstance(s, _DataDepSize)
3235                    inputs[t_descr.id, a.id] = s
3236
3237        # resolve all other input axis sizes
3238        for t_descr in self.inputs:
3239            for a in t_descr.axes:
3240                if isinstance(a.size, SizeReference):
3241                    s = get_axis_size(a)
3242                    assert not isinstance(s, _DataDepSize)
3243                    inputs[t_descr.id, a.id] = s
3244
3245        # resolve all output axis sizes
3246        for t_descr in self.outputs:
3247            for a in t_descr.axes:
3248                assert not isinstance(a.size, ParameterizedSize)
3249                s = get_axis_size(a)
3250                outputs[t_descr.id, a.id] = s
3251
3252        return _AxisSizes(inputs=inputs, outputs=outputs)
3253
3254    @model_validator(mode="before")
3255    @classmethod
3256    def _convert(cls, data: Dict[str, Any]) -> Dict[str, Any]:
3257        cls.convert_from_old_format_wo_validation(data)
3258        return data
3259
3260    @classmethod
3261    def convert_from_old_format_wo_validation(cls, data: Dict[str, Any]) -> None:
3262        """Convert metadata following an older format version to this classes' format
3263        without validating the result.
3264        """
3265        if (
3266            data.get("type") == "model"
3267            and isinstance(fv := data.get("format_version"), str)
3268            and fv.count(".") == 2
3269        ):
3270            fv_parts = fv.split(".")
3271            if any(not p.isdigit() for p in fv_parts):
3272                return
3273
3274            fv_tuple = tuple(map(int, fv_parts))
3275
3276            assert cls.implemented_format_version_tuple[0:2] == (0, 5)
3277            if fv_tuple[:2] in ((0, 3), (0, 4)):
3278                m04 = _ModelDescr_v0_4.load(data)
3279                if isinstance(m04, InvalidDescr):
3280                    try:
3281                        updated = _model_conv.convert_as_dict(
3282                            m04  # pyright: ignore[reportArgumentType]
3283                        )
3284                    except Exception as e:
3285                        logger.error(
3286                            "Failed to convert from invalid model 0.4 description."
3287                            + f"\nerror: {e}"
3288                            + "\nProceeding with model 0.5 validation without conversion."
3289                        )
3290                        updated = None
3291                else:
3292                    updated = _model_conv.convert_as_dict(m04)
3293
3294                if updated is not None:
3295                    data.clear()
3296                    data.update(updated)
3297
3298            elif fv_tuple[:2] == (0, 5):
3299                # bump patch version
3300                data["format_version"] = cls.implemented_format_version

Specification of the fields used in a bioimage.io-compliant RDF to describe AI models with pretrained weights. These fields are typically stored in a YAML file which we call a model resource description file (model RDF).

implemented_format_version: ClassVar[Literal['0.5.5']] = '0.5.5'
implemented_type: ClassVar[Literal['model']] = 'model'

bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.

authors: Annotated[List[bioimageio.spec.generic.v0_3.Author], AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78952f5d00>, severity=35, msg=None, context=None)]

The authors are the creators of the model RDF and the primary points of contact.

documentation: Annotated[Optional[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')]), AfterValidator(func=<function wo_special_file_name at 0x7f7894dbf1a0>), PlainSerializer(func=<function _package_serializer at 0x7f78868563e0>, return_type=PydanticUndefined, when_used='unless-none'), WithSuffix(suffix='.md', case_sensitive=True), FieldInfo(annotation=NoneType, required=True, examples=['https://raw.githubusercontent.com/bioimage-io/spec-bioimage-io/main/example_descriptions/models/unet2d_nuclei_broad/README.md', 'README.md'])]], AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78952f5d00>, severity=35, msg=None, context=None)]

URL or relative path to a markdown file with additional documentation. The recommended documentation file name is README.md. An .md suffix is mandatory. The documentation should include a '#[#] Validation' (sub)section with details on how to quantitatively validate the model on unseen data.

inputs: Annotated[Sequence[bioimageio.spec.model.v0_5.InputTensorDescr], MinLen(min_length=1)]

Describes the input tensors expected by this model.

name: Annotated[str, RestrictCharacters(alphabet='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_+- ()'), MinLen(min_length=5), MaxLen(max_length=128), AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78848e8360>, severity=20, msg='Name longer than 64 characters.', context={'typ': Annotated[Any, MaxLen(max_length=64)]})]

A human-readable name of this model. It should be no longer than 64 characters and may only contain letter, number, underscore, minus, parentheses and spaces. We recommend to chose a name that refers to the model's task and image modality.

outputs: Annotated[Sequence[bioimageio.spec.model.v0_5.OutputTensorDescr], MinLen(min_length=1)]

Describes the output tensors.

The persons that have packaged and uploaded this model. Only required if those persons differ from the authors.

The model from which this model is derived, e.g. by fine-tuning the weights.

run_mode: Annotated[Optional[bioimageio.spec.model.v0_4.RunMode], AfterWarner(func=<function as_warning.<locals>.wrapper at 0x7f78848e84a0>, severity=30, msg="Run mode '{value}' has limited support across consumer softwares.", context={'typ': None})]

Custom run mode for this model: for more complex prediction procedures like test time data augmentation that currently cannot be expressed in the specification. No standard run modes are defined yet.

Timestamp in ISO 8601 format with a few restrictions listed here. (In Python a datetime object is valid, too).

training_data: Annotated[Union[NoneType, bioimageio.spec.dataset.v0_3.LinkedDataset, DatasetDescr, bioimageio.spec.dataset.v0_2.DatasetDescr], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])]

The dataset used to train this model

weights: Annotated[bioimageio.spec.model.v0_5.WeightsDescr, WrapSerializer(func=<function package_weights at 0x7f78866bd4e0>, return_type=PydanticUndefined, when_used='always')]

The weights for this model. Weights can be given for different formats, but should otherwise be equivalent. The available weight formats determine which consumers can use this model.

def get_input_test_arrays(self) -> List[numpy.ndarray[tuple[Any, ...], numpy.dtype[Any]]]:
3030    def get_input_test_arrays(self) -> List[NDArray[Any]]:
3031        return self._get_test_arrays(self.inputs)
def get_output_test_arrays(self) -> List[numpy.ndarray[tuple[Any, ...], numpy.dtype[Any]]]:
3033    def get_output_test_arrays(self) -> List[NDArray[Any]]:
3034        return self._get_test_arrays(self.outputs)
@staticmethod
def get_batch_size( tensor_sizes: Mapping[bioimageio.spec.model.v0_5.TensorId, Mapping[bioimageio.spec.model.v0_5.AxisId, int]]) -> int:
3052    @staticmethod
3053    def get_batch_size(tensor_sizes: Mapping[TensorId, Mapping[AxisId, int]]) -> int:
3054        batch_size = 1
3055        tensor_with_batchsize: Optional[TensorId] = None
3056        for tid in tensor_sizes:
3057            for aid, s in tensor_sizes[tid].items():
3058                if aid != BATCH_AXIS_ID or s == 1 or s == batch_size:
3059                    continue
3060
3061                if batch_size != 1:
3062                    assert tensor_with_batchsize is not None
3063                    raise ValueError(
3064                        f"batch size mismatch for tensors '{tensor_with_batchsize}' ({batch_size}) and '{tid}' ({s})"
3065                    )
3066
3067                batch_size = s
3068                tensor_with_batchsize = tid
3069
3070        return batch_size
def get_output_tensor_sizes( self, input_sizes: Mapping[bioimageio.spec.model.v0_5.TensorId, Mapping[bioimageio.spec.model.v0_5.AxisId, int]]) -> Dict[bioimageio.spec.model.v0_5.TensorId, Dict[bioimageio.spec.model.v0_5.AxisId, Union[int, bioimageio.spec.model.v0_5._DataDepSize]]]:
3072    def get_output_tensor_sizes(
3073        self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]
3074    ) -> Dict[TensorId, Dict[AxisId, Union[int, _DataDepSize]]]:
3075        """Returns the tensor output sizes for given **input_sizes**.
3076        Only if **input_sizes** has a valid input shape, the tensor output size is exact.
3077        Otherwise it might be larger than the actual (valid) output"""
3078        batch_size = self.get_batch_size(input_sizes)
3079        ns = self.get_ns(input_sizes)
3080
3081        tensor_sizes = self.get_tensor_sizes(ns, batch_size=batch_size)
3082        return tensor_sizes.outputs

Returns the tensor output sizes for given input_sizes. Only if input_sizes has a valid input shape, the tensor output size is exact. Otherwise it might be larger than the actual (valid) output

def get_ns( self, input_sizes: Mapping[bioimageio.spec.model.v0_5.TensorId, Mapping[bioimageio.spec.model.v0_5.AxisId, int]]):
3084    def get_ns(self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]):
3085        """get parameter `n` for each parameterized axis
3086        such that the valid input size is >= the given input size"""
3087        ret: Dict[Tuple[TensorId, AxisId], ParameterizedSize_N] = {}
3088        axes = {t.id: {a.id: a for a in t.axes} for t in self.inputs}
3089        for tid in input_sizes:
3090            for aid, s in input_sizes[tid].items():
3091                size_descr = axes[tid][aid].size
3092                if isinstance(size_descr, ParameterizedSize):
3093                    ret[(tid, aid)] = size_descr.get_n(s)
3094                elif size_descr is None or isinstance(size_descr, (int, SizeReference)):
3095                    pass
3096                else:
3097                    assert_never(size_descr)
3098
3099        return ret

get parameter n for each parameterized axis such that the valid input size is >= the given input size

def get_tensor_sizes( self, ns: Mapping[Tuple[bioimageio.spec.model.v0_5.TensorId, bioimageio.spec.model.v0_5.AxisId], int], batch_size: int) -> bioimageio.spec.model.v0_5._TensorSizes:
3101    def get_tensor_sizes(
3102        self, ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], batch_size: int
3103    ) -> _TensorSizes:
3104        axis_sizes = self.get_axis_sizes(ns, batch_size=batch_size)
3105        return _TensorSizes(
3106            {
3107                t: {
3108                    aa: axis_sizes.inputs[(tt, aa)]
3109                    for tt, aa in axis_sizes.inputs
3110                    if tt == t
3111                }
3112                for t in {tt for tt, _ in axis_sizes.inputs}
3113            },
3114            {
3115                t: {
3116                    aa: axis_sizes.outputs[(tt, aa)]
3117                    for tt, aa in axis_sizes.outputs
3118                    if tt == t
3119                }
3120                for t in {tt for tt, _ in axis_sizes.outputs}
3121            },
3122        )
def get_axis_sizes( self, ns: Mapping[Tuple[bioimageio.spec.model.v0_5.TensorId, bioimageio.spec.model.v0_5.AxisId], int], batch_size: Optional[int] = None, *, max_input_shape: Optional[Mapping[Tuple[bioimageio.spec.model.v0_5.TensorId, bioimageio.spec.model.v0_5.AxisId], int]] = None) -> bioimageio.spec.model.v0_5._AxisSizes:
3124    def get_axis_sizes(
3125        self,
3126        ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N],
3127        batch_size: Optional[int] = None,
3128        *,
3129        max_input_shape: Optional[Mapping[Tuple[TensorId, AxisId], int]] = None,
3130    ) -> _AxisSizes:
3131        """Determine input and output block shape for scale factors **ns**
3132        of parameterized input sizes.
3133
3134        Args:
3135            ns: Scale factor `n` for each axis (keyed by (tensor_id, axis_id))
3136                that is parameterized as `size = min + n * step`.
3137            batch_size: The desired size of the batch dimension.
3138                If given **batch_size** overwrites any batch size present in
3139                **max_input_shape**. Default 1.
3140            max_input_shape: Limits the derived block shapes.
3141                Each axis for which the input size, parameterized by `n`, is larger
3142                than **max_input_shape** is set to the minimal value `n_min` for which
3143                this is still true.
3144                Use this for small input samples or large values of **ns**.
3145                Or simply whenever you know the full input shape.
3146
3147        Returns:
3148            Resolved axis sizes for model inputs and outputs.
3149        """
3150        max_input_shape = max_input_shape or {}
3151        if batch_size is None:
3152            for (_t_id, a_id), s in max_input_shape.items():
3153                if a_id == BATCH_AXIS_ID:
3154                    batch_size = s
3155                    break
3156            else:
3157                batch_size = 1
3158
3159        all_axes = {
3160            t.id: {a.id: a for a in t.axes} for t in chain(self.inputs, self.outputs)
3161        }
3162
3163        inputs: Dict[Tuple[TensorId, AxisId], int] = {}
3164        outputs: Dict[Tuple[TensorId, AxisId], Union[int, _DataDepSize]] = {}
3165
3166        def get_axis_size(a: Union[InputAxis, OutputAxis]):
3167            if isinstance(a, BatchAxis):
3168                if (t_descr.id, a.id) in ns:
3169                    logger.warning(
3170                        "Ignoring unexpected size increment factor (n) for batch axis"
3171                        + " of tensor '{}'.",
3172                        t_descr.id,
3173                    )
3174                return batch_size
3175            elif isinstance(a.size, int):
3176                if (t_descr.id, a.id) in ns:
3177                    logger.warning(
3178                        "Ignoring unexpected size increment factor (n) for fixed size"
3179                        + " axis '{}' of tensor '{}'.",
3180                        a.id,
3181                        t_descr.id,
3182                    )
3183                return a.size
3184            elif isinstance(a.size, ParameterizedSize):
3185                if (t_descr.id, a.id) not in ns:
3186                    raise ValueError(
3187                        "Size increment factor (n) missing for parametrized axis"
3188                        + f" '{a.id}' of tensor '{t_descr.id}'."
3189                    )
3190                n = ns[(t_descr.id, a.id)]
3191                s_max = max_input_shape.get((t_descr.id, a.id))
3192                if s_max is not None:
3193                    n = min(n, a.size.get_n(s_max))
3194
3195                return a.size.get_size(n)
3196
3197            elif isinstance(a.size, SizeReference):
3198                if (t_descr.id, a.id) in ns:
3199                    logger.warning(
3200                        "Ignoring unexpected size increment factor (n) for axis '{}'"
3201                        + " of tensor '{}' with size reference.",
3202                        a.id,
3203                        t_descr.id,
3204                    )
3205                assert not isinstance(a, BatchAxis)
3206                ref_axis = all_axes[a.size.tensor_id][a.size.axis_id]
3207                assert not isinstance(ref_axis, BatchAxis)
3208                ref_key = (a.size.tensor_id, a.size.axis_id)
3209                ref_size = inputs.get(ref_key, outputs.get(ref_key))
3210                assert ref_size is not None, ref_key
3211                assert not isinstance(ref_size, _DataDepSize), ref_key
3212                return a.size.get_size(
3213                    axis=a,
3214                    ref_axis=ref_axis,
3215                    ref_size=ref_size,
3216                )
3217            elif isinstance(a.size, DataDependentSize):
3218                if (t_descr.id, a.id) in ns:
3219                    logger.warning(
3220                        "Ignoring unexpected increment factor (n) for data dependent"
3221                        + " size axis '{}' of tensor '{}'.",
3222                        a.id,
3223                        t_descr.id,
3224                    )
3225                return _DataDepSize(a.size.min, a.size.max)
3226            else:
3227                assert_never(a.size)
3228
3229        # first resolve all , but the `SizeReference` input sizes
3230        for t_descr in self.inputs:
3231            for a in t_descr.axes:
3232                if not isinstance(a.size, SizeReference):
3233                    s = get_axis_size(a)
3234                    assert not isinstance(s, _DataDepSize)
3235                    inputs[t_descr.id, a.id] = s
3236
3237        # resolve all other input axis sizes
3238        for t_descr in self.inputs:
3239            for a in t_descr.axes:
3240                if isinstance(a.size, SizeReference):
3241                    s = get_axis_size(a)
3242                    assert not isinstance(s, _DataDepSize)
3243                    inputs[t_descr.id, a.id] = s
3244
3245        # resolve all output axis sizes
3246        for t_descr in self.outputs:
3247            for a in t_descr.axes:
3248                assert not isinstance(a.size, ParameterizedSize)
3249                s = get_axis_size(a)
3250                outputs[t_descr.id, a.id] = s
3251
3252        return _AxisSizes(inputs=inputs, outputs=outputs)

Determine input and output block shape for scale factors ns of parameterized input sizes.

Arguments:
  • ns: Scale factor n for each axis (keyed by (tensor_id, axis_id)) that is parameterized as size = min + n * step.
  • batch_size: The desired size of the batch dimension. If given batch_size overwrites any batch size present in max_input_shape. Default 1.
  • max_input_shape: Limits the derived block shapes. Each axis for which the input size, parameterized by n, is larger than max_input_shape is set to the minimal value n_min for which this is still true. Use this for small input samples or large values of ns. Or simply whenever you know the full input shape.
Returns:

Resolved axis sizes for model inputs and outputs.

@classmethod
def convert_from_old_format_wo_validation(cls, data: Dict[str, Any]) -> None:
3260    @classmethod
3261    def convert_from_old_format_wo_validation(cls, data: Dict[str, Any]) -> None:
3262        """Convert metadata following an older format version to this classes' format
3263        without validating the result.
3264        """
3265        if (
3266            data.get("type") == "model"
3267            and isinstance(fv := data.get("format_version"), str)
3268            and fv.count(".") == 2
3269        ):
3270            fv_parts = fv.split(".")
3271            if any(not p.isdigit() for p in fv_parts):
3272                return
3273
3274            fv_tuple = tuple(map(int, fv_parts))
3275
3276            assert cls.implemented_format_version_tuple[0:2] == (0, 5)
3277            if fv_tuple[:2] in ((0, 3), (0, 4)):
3278                m04 = _ModelDescr_v0_4.load(data)
3279                if isinstance(m04, InvalidDescr):
3280                    try:
3281                        updated = _model_conv.convert_as_dict(
3282                            m04  # pyright: ignore[reportArgumentType]
3283                        )
3284                    except Exception as e:
3285                        logger.error(
3286                            "Failed to convert from invalid model 0.4 description."
3287                            + f"\nerror: {e}"
3288                            + "\nProceeding with model 0.5 validation without conversion."
3289                        )
3290                        updated = None
3291                else:
3292                    updated = _model_conv.convert_as_dict(m04)
3293
3294                if updated is not None:
3295                    data.clear()
3296                    data.update(updated)
3297
3298            elif fv_tuple[:2] == (0, 5):
3299                # bump patch version
3300                data["format_version"] = cls.implemented_format_version

Convert metadata following an older format version to this classes' format without validating the result.

implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 5, 5)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'forbid', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
class NotebookDescr(bioimageio.spec.generic.v0_3.GenericDescrBase):
31class NotebookDescr(GenericDescrBase):
32    """Bioimage.io description of a Jupyter notebook."""
33
34    implemented_type: ClassVar[Literal["notebook"]] = "notebook"
35    if TYPE_CHECKING:
36        type: Literal["notebook"] = "notebook"
37    else:
38        type: Literal["notebook"]
39
40    id: Optional[NotebookId] = None
41    """bioimage.io-wide unique resource identifier
42    assigned by bioimage.io; version **un**specific."""
43
44    parent: Optional[NotebookId] = None
45    """The description from which this one is derived"""
46
47    source: NotebookSource
48    """The Jupyter notebook"""

Bioimage.io description of a Jupyter notebook.

implemented_type: ClassVar[Literal['notebook']] = 'notebook'
id: Optional[bioimageio.spec.notebook.v0_3.NotebookId]

bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.

parent: Optional[bioimageio.spec.notebook.v0_3.NotebookId]

The description from which this one is derived

source: Union[Annotated[bioimageio.spec._internal.url.HttpUrl, WithSuffix(suffix='.ipynb', case_sensitive=True)], Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath'), WithSuffix(suffix='.ipynb', case_sensitive=True)], Annotated[bioimageio.spec._internal.io.RelativeFilePath, WithSuffix(suffix='.ipynb', case_sensitive=True)]]

The Jupyter notebook

implemented_format_version_tuple: ClassVar[Tuple[int, int, int]] = (0, 3, 0)
model_config: ClassVar[pydantic.config.ConfigDict] = {'allow_inf_nan': False, 'extra': 'forbid', 'frozen': False, 'model_title_generator': <function _node_title_generator>, 'populate_by_name': True, 'revalidate_instances': 'always', 'use_attribute_docstrings': True, 'validate_assignment': True, 'validate_default': True, 'validate_return': True, 'validate_by_alias': True, 'validate_by_name': True}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

def model_post_init(self: pydantic.main.BaseModel, context: Any, /) -> None:
337def init_private_attributes(self: BaseModel, context: Any, /) -> None:
338    """This function is meant to behave like a BaseModel method to initialise private attributes.
339
340    It takes context as an argument since that's what pydantic-core passes when calling it.
341
342    Args:
343        self: The BaseModel instance.
344        context: The context.
345    """
346    if getattr(self, '__pydantic_private__', None) is None:
347        pydantic_private = {}
348        for name, private_attr in self.__private_attributes__.items():
349            default = private_attr.get_default()
350            if default is not PydanticUndefined:
351                pydantic_private[name] = default
352        object_setattr(self, '__pydantic_private__', pydantic_private)

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that's what pydantic-core passes when calling it.

Arguments:
  • self: The BaseModel instance.
  • context: The context.
ResourceDescr = typing.Union[typing.Annotated[typing.Union[typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], typing.Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], typing.Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], typing.Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], typing.Annotated[typing.Union[typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], typing.Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]]
def save_bioimageio_package_as_folder( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Dict[str, YamlValue], Mapping[str, YamlValueView], Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]], /, *, output_path: Union[Annotated[pathlib.Path, PathType(path_type='new')], Annotated[pathlib.Path, PathType(path_type='dir')], NoneType] = None, weights_priority_order: Optional[Sequence[Literal['keras_hdf5', 'onnx', 'pytorch_state_dict', 'tensorflow_js', 'tensorflow_saved_model_bundle', 'torchscript']]] = None) -> Annotated[pathlib.Path, PathType(path_type='dir')]:
150def save_bioimageio_package_as_folder(
151    source: Union[BioimageioYamlSource, ResourceDescr],
152    /,
153    *,
154    output_path: Union[NewPath, DirectoryPath, None] = None,
155    weights_priority_order: Optional[  # model only
156        Sequence[
157            Literal[
158                "keras_hdf5",
159                "onnx",
160                "pytorch_state_dict",
161                "tensorflow_js",
162                "tensorflow_saved_model_bundle",
163                "torchscript",
164            ]
165        ]
166    ] = None,
167) -> DirectoryPath:
168    """Write the content of a bioimage.io resource package to a folder.
169
170    Args:
171        source: bioimageio resource description
172        output_path: file path to write package to
173        weights_priority_order: If given only the first weights format present in the model is included.
174                                If none of the prioritized weights formats is found all are included.
175
176    Returns:
177        directory path to bioimageio package folder
178    """
179    package_content = _prepare_resource_package(
180        source,
181        weights_priority_order=weights_priority_order,
182    )
183    if output_path is None:
184        output_path = Path(mkdtemp())
185    else:
186        output_path = Path(output_path)
187
188    output_path.mkdir(exist_ok=True, parents=True)
189    for name, src in package_content.items():
190        if isinstance(src, collections.abc.Mapping):
191            write_yaml(src, output_path / name)
192        elif (
193            isinstance(src.original_root, Path)
194            and src.original_root / src.original_file_name
195            == (output_path / name).resolve()
196        ):
197            logger.debug(
198                f"Not copying {src.original_root / src.original_file_name} to itself."
199            )
200        else:
201            if isinstance(src.original_root, Path):
202                logger.debug(
203                    f"Copying from path {src.original_root / src.original_file_name} to {output_path / name}."
204                )
205            else:
206                logger.debug(
207                    f"Copying {src.original_root}/{src.original_file_name} to {output_path / name}."
208                )
209            with (output_path / name).open("wb") as dest:
210                _ = shutil.copyfileobj(src, dest)
211
212    return output_path

Write the content of a bioimage.io resource package to a folder.

Arguments:
  • source: bioimageio resource description
  • output_path: file path to write package to
  • weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.
Returns:

directory path to bioimageio package folder

def save_bioimageio_package_to_stream( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Dict[str, YamlValue], Mapping[str, YamlValueView], Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]], /, *, compression: int = 8, compression_level: int = 1, output_stream: Optional[IO[bytes]] = None, weights_priority_order: Optional[Sequence[Literal['keras_hdf5', 'onnx', 'pytorch_state_dict', 'tensorflow_js', 'tensorflow_saved_model_bundle', 'torchscript']]] = None) -> IO[bytes]:
279def save_bioimageio_package_to_stream(
280    source: Union[BioimageioYamlSource, ResourceDescr],
281    /,
282    *,
283    compression: int = ZIP_DEFLATED,
284    compression_level: int = 1,
285    output_stream: Union[IO[bytes], None] = None,
286    weights_priority_order: Optional[  # model only
287        Sequence[
288            Literal[
289                "keras_hdf5",
290                "onnx",
291                "pytorch_state_dict",
292                "tensorflow_js",
293                "tensorflow_saved_model_bundle",
294                "torchscript",
295            ]
296        ]
297    ] = None,
298) -> IO[bytes]:
299    """Package a bioimageio resource into a stream.
300
301    Args:
302        rd: bioimageio resource description
303        compression: The numeric constant of compression method.
304        compression_level: Compression level to use when writing files to the archive.
305                           See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
306        output_stream: stream to write package to
307        weights_priority_order: If given only the first weights format present in the model is included.
308                                If none of the prioritized weights formats is found all are included.
309
310    Note: this function bypasses safety checks and does not load/validate the model after writing.
311
312    Returns:
313        stream of zipped bioimageio package
314    """
315    if output_stream is None:
316        output_stream = BytesIO()
317
318    package_content = _prepare_resource_package(
319        source,
320        weights_priority_order=weights_priority_order,
321    )
322
323    write_zip(
324        output_stream,
325        package_content,
326        compression=compression,
327        compression_level=compression_level,
328    )
329
330    return output_stream

Package a bioimageio resource into a stream.

Arguments:
  • rd: bioimageio resource description
  • compression: The numeric constant of compression method.
  • compression_level: Compression level to use when writing files to the archive. See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
  • output_stream: stream to write package to
  • weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.

Note: this function bypasses safety checks and does not load/validate the model after writing.

Returns:

stream of zipped bioimageio package

def save_bioimageio_package( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Dict[str, YamlValue], Mapping[str, YamlValueView], Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')]], /, *, compression: int = 8, compression_level: int = 1, output_path: Union[Annotated[pathlib.Path, PathType(path_type='new')], Annotated[pathlib.Path, PathType(path_type='file')], NoneType] = None, weights_priority_order: Optional[Sequence[Literal['keras_hdf5', 'onnx', 'pytorch_state_dict', 'tensorflow_js', 'tensorflow_saved_model_bundle', 'torchscript']]] = None, allow_invalid: bool = False) -> Annotated[pathlib.Path, PathType(path_type='file')]:
215def save_bioimageio_package(
216    source: Union[BioimageioYamlSource, ResourceDescr],
217    /,
218    *,
219    compression: int = ZIP_DEFLATED,
220    compression_level: int = 1,
221    output_path: Union[NewPath, FilePath, None] = None,
222    weights_priority_order: Optional[  # model only
223        Sequence[
224            Literal[
225                "keras_hdf5",
226                "onnx",
227                "pytorch_state_dict",
228                "tensorflow_js",
229                "tensorflow_saved_model_bundle",
230                "torchscript",
231            ]
232        ]
233    ] = None,
234    allow_invalid: bool = False,
235) -> FilePath:
236    """Package a bioimageio resource as a zip file.
237
238    Args:
239        rd: bioimageio resource description
240        compression: The numeric constant of compression method.
241        compression_level: Compression level to use when writing files to the archive.
242                           See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
243        output_path: file path to write package to
244        weights_priority_order: If given only the first weights format present in the model is included.
245                                If none of the prioritized weights formats is found all are included.
246
247    Returns:
248        path to zipped bioimageio package
249    """
250    package_content = _prepare_resource_package(
251        source,
252        weights_priority_order=weights_priority_order,
253    )
254    if output_path is None:
255        output_path = Path(
256            NamedTemporaryFile(suffix=".bioimageio.zip", delete=False).name
257        )
258    else:
259        output_path = Path(output_path)
260
261    write_zip(
262        output_path,
263        package_content,
264        compression=compression,
265        compression_level=compression_level,
266    )
267    with get_validation_context().replace(warning_level=ERROR):
268        if isinstance((exported := load_description(output_path)), InvalidDescr):
269            exported.validation_summary.display()
270            msg = f"Exported package at '{output_path}' is invalid."
271            if allow_invalid:
272                logger.error(msg)
273            else:
274                raise ValueError(msg)
275
276    return output_path

Package a bioimageio resource as a zip file.

Arguments:
  • rd: bioimageio resource description
  • compression: The numeric constant of compression method.
  • compression_level: Compression level to use when writing files to the archive. See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
  • output_path: file path to write package to
  • weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.
Returns:

path to zipped bioimageio package

def save_bioimageio_yaml_only( rd: Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], Dict[str, YamlValue], InvalidDescr], /, file: Union[Annotated[pathlib.Path, PathType(path_type='new')], Annotated[pathlib.Path, PathType(path_type='file')], TextIO], *, exclude_unset: bool = True, exclude_defaults: bool = False):
213def save_bioimageio_yaml_only(
214    rd: Union[ResourceDescr, BioimageioYamlContent, InvalidDescr],
215    /,
216    file: Union[NewPath, FilePath, TextIO],
217    *,
218    exclude_unset: bool = True,
219    exclude_defaults: bool = False,
220):
221    """write the metadata of a resource description (`rd`) to `file`
222    without writing any of the referenced files in it.
223
224    Args:
225        rd: bioimageio resource description
226        file: file or stream to save to
227        exclude_unset: Exclude fields that have not explicitly be set.
228        exclude_defaults: Exclude fields that have the default value (even if set explicitly).
229
230    Note: To save a resource description with its associated files as a package,
231    use `save_bioimageio_package` or `save_bioimageio_package_as_folder`.
232    """
233    if isinstance(rd, ResourceDescrBase):
234        content = dump_description(
235            rd, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults
236        )
237    else:
238        content = rd
239
240    write_yaml(cast(YamlValue, content), file)

write the metadata of a resource description (rd) to file without writing any of the referenced files in it.

Arguments:
  • rd: bioimageio resource description
  • file: file or stream to save to
  • exclude_unset: Exclude fields that have not explicitly be set.
  • exclude_defaults: Exclude fields that have the default value (even if set explicitly).

Note: To save a resource description with its associated files as a package, use save_bioimageio_package or save_bioimageio_package_as_folder.

settings = Settings(allow_pickle=False, cache_path=PosixPath('/home/runner/.cache/bioimageio'), collection_http_pattern='https://hypha.aicell.io/bioimage-io/artifacts/{bioimageio_id}/files/rdf.yaml', hypha_upload='https://hypha.aicell.io/public/services/artifact-manager/create', hypha_upload_token=None, id_map='https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/id_map.json', id_map_draft='https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/id_map_draft.json', perform_io_checks=True, resolve_draft=True, log_warnings=True, github_username=None, github_token=None, CI='true', user_agent=None)
SpecificResourceDescr = typing.Annotated[typing.Union[typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], typing.Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], typing.Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], typing.Annotated[typing.Union[typing.Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], typing.Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], typing.Annotated[typing.Union[typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], typing.Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)]
def update_format( source: Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Dict[str, YamlValue], InvalidDescr], /, *, output: Union[pathlib.Path, TextIO, NoneType] = None, exclude_defaults: bool = True, perform_io_checks: Optional[bool] = None) -> Union[Annotated[Union[ApplicationDescr, DatasetDescr, ModelDescr, NotebookDescr], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], GenericDescr, InvalidDescr]:
269def update_format(
270    source: Union[
271        ResourceDescr,
272        PermissiveFileSource,
273        ZipFile,
274        BioimageioYamlContent,
275        InvalidDescr,
276    ],
277    /,
278    *,
279    output: Union[Path, TextIO, None] = None,
280    exclude_defaults: bool = True,
281    perform_io_checks: Optional[bool] = None,
282) -> Union[LatestResourceDescr, InvalidDescr]:
283    """Update a resource description.
284
285    Notes:
286    - Invalid **source** descriptions may fail to update.
287    - The updated description might be invalid (even if the **source** was valid).
288    """
289
290    if isinstance(source, ResourceDescrBase):
291        root = source.root
292        source = dump_description(source)
293    else:
294        root = None
295
296    if isinstance(source, collections.abc.Mapping):
297        descr = build_description(
298            source,
299            context=get_validation_context().replace(
300                root=root, perform_io_checks=perform_io_checks
301            ),
302            format_version=LATEST,
303        )
304
305    else:
306        descr = load_description(
307            source,
308            perform_io_checks=perform_io_checks,
309            format_version=LATEST,
310        )
311
312    if output is not None:
313        save_bioimageio_yaml_only(descr, file=output, exclude_defaults=exclude_defaults)
314
315    return descr

Update a resource description.

Notes:

  • Invalid source descriptions may fail to update.
  • The updated description might be invalid (even if the source was valid).
def update_hashes( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], Dict[str, YamlValue]], /) -> Union[Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], InvalidDescr]:
318def update_hashes(
319    source: Union[PermissiveFileSource, ZipFile, ResourceDescr, BioimageioYamlContent],
320    /,
321) -> Union[ResourceDescr, InvalidDescr]:
322    """Update hash values of the files referenced in **source**."""
323    if isinstance(source, ResourceDescrBase):
324        root = source.root
325        source = dump_description(source)
326    else:
327        root = None
328
329    context = get_validation_context().replace(
330        update_hashes=True, root=root, perform_io_checks=True
331    )
332    with context:
333        if isinstance(source, collections.abc.Mapping):
334            return build_description(source)
335        else:
336            return load_description(source, perform_io_checks=True)

Update hash values of the files referenced in source.

def upload( source: Union[Annotated[Union[bioimageio.spec._internal.url.HttpUrl, bioimageio.spec._internal.io.RelativeFilePath, Annotated[pathlib.Path, PathType(path_type='file'), FieldInfo(annotation=NoneType, required=True, title='FilePath')]], FieldInfo(annotation=NoneType, required=True, metadata=[_PydanticGeneralMetadata(union_mode='left_to_right')])], str, pydantic.networks.HttpUrl, zipfile.ZipFile, Annotated[Union[Annotated[Union[Annotated[bioimageio.spec.application.v0_2.ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.2')], Annotated[ApplicationDescr, FieldInfo(annotation=NoneType, required=True, title='application 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='application')], Annotated[Union[Annotated[bioimageio.spec.dataset.v0_2.DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.2')], Annotated[DatasetDescr, FieldInfo(annotation=NoneType, required=True, title='dataset 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='dataset')], Annotated[Union[Annotated[bioimageio.spec.model.v0_4.ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.4')], Annotated[ModelDescr, FieldInfo(annotation=NoneType, required=True, title='model 0.5')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='model')], Annotated[Union[Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.2')], Annotated[NotebookDescr, FieldInfo(annotation=NoneType, required=True, title='notebook 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='notebook')]], Discriminator(discriminator='type', custom_error_type=None, custom_error_message=None, custom_error_context=None)], Annotated[Union[Annotated[bioimageio.spec.generic.v0_2.GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.2')], Annotated[GenericDescr, FieldInfo(annotation=NoneType, required=True, title='generic 0.3')]], Discriminator(discriminator='format_version', custom_error_type=None, custom_error_message=None, custom_error_context=None), FieldInfo(annotation=NoneType, required=True, title='generic')], Dict[str, YamlValue]], /) -> bioimageio.spec._internal.url.HttpUrl:
 28def upload(
 29    source: Union[PermissiveFileSource, ZipFile, ResourceDescr, BioimageioYamlContent],
 30    /,
 31) -> HttpUrl:
 32    """Upload a new resource description (version) to the hypha server to be shared at bioimage.io.
 33    To edit an existing resource **version**, please login to https://bioimage.io and use the web interface.
 34
 35    WARNING: This upload function is in alpha stage and might change in the future.
 36
 37    Args:
 38        source: The resource description to upload.
 39
 40    Returns:
 41        A URL to the uploaded resource description.
 42        Note: It might take some time until the resource is processed and available for download from the returned URL.
 43    """
 44
 45    if settings.hypha_upload_token is None:
 46        raise ValueError(
 47            """
 48Upload token is not set. Please set BIOIMAGEIO_HYPHA_UPLOAD_TOKEN in your environment variables.
 49By setting this token you agree to our terms of service at https://bioimage.io/#/toc.
 50
 51How to obtain a token:
 52    1. Login to https://bioimage.io
 53    2. Generate a new token at https://bioimage.io/#/api?tab=hypha-rpc
 54"""
 55        )
 56
 57    if isinstance(source, ResourceDescrBase):
 58        # If source is already a ResourceDescr, we can use it directly
 59        descr = source
 60    elif isinstance(source, dict):
 61        descr = build_description(source)
 62    else:
 63        descr = load_description(source)
 64
 65    if isinstance(descr, InvalidDescr):
 66        raise ValueError("Uploading invalid resource descriptions is not allowed.")
 67
 68    if descr.type != "model":
 69        raise NotImplementedError(
 70            f"For now, only model resources can be uploaded (got type={descr.type})."
 71        )
 72
 73    if descr.id is not None:
 74        raise ValueError(
 75            "You cannot upload a resource with an id. Please remove the id from the description and make sure to upload a new non-existing resource. To edit an existing resource, please use the web interface at https://bioimage.io."
 76        )
 77
 78    content = get_resource_package_content(descr)
 79
 80    metadata = content[BIOIMAGEIO_YAML]
 81    assert isinstance(metadata, dict)
 82    manifest = dict(metadata)
 83
 84    # only admins can upload a resource with a version
 85    artifact_version = "stage"  # if descr.version is None else str(descr.version)
 86
 87    # Create new model
 88    r = httpx.post(
 89        settings.hypha_upload,
 90        json={
 91            "parent_id": "bioimage-io/bioimage.io",
 92            "alias": (
 93                descr.id or "{animal_adjective}-{animal}"
 94            ),  # TODO: adapt for non-model uploads,
 95            "type": descr.type,
 96            "manifest": manifest,
 97            "version": artifact_version,
 98        },
 99        headers=(
100            headers := {
101                "Authorization": f"Bearer {settings.hypha_upload_token}",
102                "Content-Type": "application/json",
103            }
104        ),
105    )
106
107    response = r.json()
108    artifact_id = response.get("id")
109    if artifact_id is None:
110        try:
111            logger.error("Response detail: {}", "".join(response["detail"]))
112        except Exception:
113            logger.error("Response: {}", response)
114
115        raise RuntimeError(f"Upload did not return resource id: {response}")
116    else:
117        logger.info("Uploaded resource description {}", artifact_id)
118
119    for file_name, file_source in content.items():
120        # Get upload URL for a file
121        response = httpx.post(
122            settings.hypha_upload.replace("/create", "/put_file"),
123            json={
124                "artifact_id": artifact_id,
125                "file_path": file_name,
126            },
127            headers=headers,
128            follow_redirects=True,
129        )
130        upload_url = response.raise_for_status().json()
131
132        # Upload file to the provided URL
133        if isinstance(file_source, collections.abc.Mapping):
134            buf = io.BytesIO()
135            write_yaml(file_source, buf)
136            files = {file_name: buf}
137        else:
138            files = {file_name: get_reader(file_source)}
139
140        response = httpx.put(
141            upload_url,
142            files=files,  # pyright: ignore[reportArgumentType]
143            # TODO: follow up on https://github.com/encode/httpx/discussions/3611
144            headers={"Content-Type": ""},  # Important for S3 uploads
145            follow_redirects=True,
146        )
147        logger.info("Uploaded '{}' successfully", file_name)
148
149    # Update model status
150    manifest["status"] = "request-review"
151    response = httpx.post(
152        settings.hypha_upload.replace("/create", "/edit"),
153        json={
154            "artifact_id": artifact_id,
155            "version": artifact_version,
156            "manifest": manifest,
157        },
158        headers=headers,
159        follow_redirects=True,
160    )
161    logger.info(
162        "Updated status of {}/{} to 'request-review'", artifact_id, artifact_version
163    )
164    logger.warning(
165        "Upload successfull. Please note that the uploaded resource might not be available for download immediately."
166    )
167    with get_validation_context().replace(perform_io_checks=False):
168        return HttpUrl(
169            f"https://hypha.aicell.io/bioimage-io/artifacts/{artifact_id}/files/rdf.yaml?version={artifact_version}"
170        )

Upload a new resource description (version) to the hypha server to be shared at bioimage.io. To edit an existing resource version, please login to https://bioimage.io and use the web interface.

WARNING: This upload function is in alpha stage and might change in the future.

Arguments:
  • source: The resource description to upload.
Returns:

A URL to the uploaded resource description. Note: It might take some time until the resource is processed and available for download from the returned URL.

def validate_format( data: Dict[str, YamlValue], /, *, format_version: Union[Literal['latest', 'discover'], str] = 'discover', context: Optional[ValidationContext] = None) -> ValidationSummary:
212def validate_format(
213    data: BioimageioYamlContent,
214    /,
215    *,
216    format_version: Union[Literal["discover", "latest"], str] = DISCOVER,
217    context: Optional[ValidationContext] = None,
218) -> ValidationSummary:
219    """Validate a dictionary holding a bioimageio description.
220    See `bioimagieo.spec.load_description_and_validate_format_only`
221    to validate a file source.
222
223    Args:
224        data: Dictionary holding the raw bioimageio.yaml content.
225        format_version:
226            Format version to (update to and) use for validation.
227            Note:
228            - Use "latest" to convert to the latest available format version.
229            - Use "discover" to use the format version specified in the RDF.
230            - Only considers major.minor format version, ignores patch version.
231            - Conversion to lower format versions is not supported.
232        context: Validation context, see `bioimagieo.spec.ValidationContext`
233
234    Note:
235        Use `bioimagieo.spec.load_description_and_validate_format_only` to validate a
236        file source instead of loading the YAML content and creating the appropriate
237        `ValidationContext`.
238
239        Alternatively you can use `bioimagieo.spec.load_description` and access the
240        `validation_summary` attribute of the returned object.
241    """
242    with context or get_validation_context():
243        rd = build_description(data, format_version=format_version)
244
245    assert rd.validation_summary is not None
246    return rd.validation_summary

Validate a dictionary holding a bioimageio description. See bioimagieo.spec.load_description_and_validate_format_only to validate a file source.

Arguments:
  • data: Dictionary holding the raw bioimageio.yaml content.
  • format_version: Format version to (update to and) use for validation. Note:
    • Use "latest" to convert to the latest available format version.
    • Use "discover" to use the format version specified in the RDF.
    • Only considers major.minor format version, ignores patch version.
    • Conversion to lower format versions is not supported.
  • context: Validation context, see bioimagieo.spec.ValidationContext
Note:

Use bioimagieo.spec.load_description_and_validate_format_only to validate a file source instead of loading the YAML content and creating the appropriate ValidationContext.

Alternatively you can use bioimagieo.spec.load_description and access the validation_summary attribute of the returned object.

@dataclass(frozen=True)
class ValidationContext(bioimageio.spec._internal.validation_context.ValidationContextBase):
 60@dataclass(frozen=True)
 61class ValidationContext(ValidationContextBase):
 62    """A validation context used to control validation of bioimageio resources.
 63
 64    For example a relative file path in a bioimageio description requires the **root**
 65    context to evaluate if the file is available and, if **perform_io_checks** is true,
 66    if it matches its expected SHA256 hash value.
 67    """
 68
 69    _context_tokens: "List[Token[Optional[ValidationContext]]]" = field(
 70        init=False,
 71        default_factory=cast(
 72            "Callable[[], List[Token[Optional[ValidationContext]]]]", list
 73        ),
 74    )
 75
 76    cache: Union[
 77        DiskCache[RootHttpUrl], MemoryCache[RootHttpUrl], NoopCache[RootHttpUrl]
 78    ] = field(default=settings.disk_cache)
 79    disable_cache: bool = False
 80    """Disable caching downloads to `settings.cache_path`
 81    and (re)download them to memory instead."""
 82
 83    root: Union[RootHttpUrl, DirectoryPath, ZipFile] = Path()
 84    """Url/directory/archive serving as base to resolve any relative file paths."""
 85
 86    warning_level: WarningLevel = 50
 87    """Treat warnings of severity `s` as validation errors if `s >= warning_level`."""
 88
 89    log_warnings: bool = settings.log_warnings
 90    """If `True` warnings are logged to the terminal
 91
 92    Note: This setting does not affect warning entries
 93        of a generated `bioimageio.spec.ValidationSummary`.
 94    """
 95
 96    progressbar: Union[None, bool, Callable[[], Progressbar]] = None
 97    """Control any progressbar.
 98    (Currently this is only used for file downloads.)
 99
100    Can be:
101    - `None`: use a default tqdm progressbar (if not settings.CI)
102    - `True`: use a default tqdm progressbar
103    - `False`: disable the progressbar
104    - `callable`: A callable that returns a tqdm-like progressbar.
105    """
106
107    raise_errors: bool = False
108    """Directly raise any validation errors
109    instead of aggregating errors and returning a `bioimageio.spec.InvalidDescr`. (for debugging)"""
110
111    @property
112    def summary(self):
113        if isinstance(self.root, ZipFile):
114            if self.root.filename is None:
115                root = "in-memory"
116            else:
117                root = Path(self.root.filename)
118        else:
119            root = self.root
120
121        return ValidationContextSummary(
122            root=root,
123            file_name=self.file_name,
124            perform_io_checks=self.perform_io_checks,
125            known_files=copy(self.known_files),
126            update_hashes=self.update_hashes,
127        )
128
129    def __enter__(self):
130        self._context_tokens.append(_validation_context_var.set(self))
131        return self
132
133    def __exit__(self, type, value, traceback):  # type: ignore
134        _validation_context_var.reset(self._context_tokens.pop(-1))
135
136    def replace(  # TODO: probably use __replace__ when py>=3.13
137        self,
138        root: Optional[Union[RootHttpUrl, DirectoryPath, ZipFile]] = None,
139        warning_level: Optional[WarningLevel] = None,
140        log_warnings: Optional[bool] = None,
141        file_name: Optional[str] = None,
142        perform_io_checks: Optional[bool] = None,
143        known_files: Optional[Dict[str, Optional[Sha256]]] = None,
144        raise_errors: Optional[bool] = None,
145        update_hashes: Optional[bool] = None,
146        original_source_name: Optional[str] = None,
147    ) -> Self:
148        if known_files is None and root is not None and self.root != root:
149            # reset known files if root changes, but no new known_files are given
150            known_files = {}
151
152        return self.__class__(
153            root=self.root if root is None else root,
154            warning_level=(
155                self.warning_level if warning_level is None else warning_level
156            ),
157            log_warnings=self.log_warnings if log_warnings is None else log_warnings,
158            file_name=self.file_name if file_name is None else file_name,
159            perform_io_checks=(
160                self.perform_io_checks
161                if perform_io_checks is None
162                else perform_io_checks
163            ),
164            known_files=self.known_files if known_files is None else known_files,
165            raise_errors=self.raise_errors if raise_errors is None else raise_errors,
166            update_hashes=(
167                self.update_hashes if update_hashes is None else update_hashes
168            ),
169            original_source_name=(
170                self.original_source_name
171                if original_source_name is None
172                else original_source_name
173            ),
174        )
175
176    @property
177    def source_name(self) -> str:
178        if self.original_source_name is not None:
179            return self.original_source_name
180        elif self.file_name is None:
181            return "in-memory"
182        else:
183            try:
184                if isinstance(self.root, Path):
185                    source = (self.root / self.file_name).absolute()
186                else:
187                    parsed = urlsplit(str(self.root))
188                    path = list(parsed.path.strip("/").split("/")) + [self.file_name]
189                    source = urlunsplit(
190                        (
191                            parsed.scheme,
192                            parsed.netloc,
193                            "/".join(path),
194                            parsed.query,
195                            parsed.fragment,
196                        )
197                    )
198            except ValueError:
199                return self.file_name
200            else:
201                return str(source)

A validation context used to control validation of bioimageio resources.

For example a relative file path in a bioimageio description requires the root context to evaluate if the file is available and, if perform_io_checks is true, if it matches its expected SHA256 hash value.

ValidationContext( file_name: Optional[str] = None, original_source_name: Optional[str] = None, perform_io_checks: bool = True, known_files: Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]] = <factory>, update_hashes: bool = False, cache: Union[genericache.disk_cache.DiskCache[bioimageio.spec._internal.root_url.RootHttpUrl], genericache.memory_cache.MemoryCache[bioimageio.spec._internal.root_url.RootHttpUrl], genericache.noop_cache.NoopCache[bioimageio.spec._internal.root_url.RootHttpUrl]] = <genericache.disk_cache.DiskCache object>, disable_cache: bool = False, root: Union[bioimageio.spec._internal.root_url.RootHttpUrl, Annotated[pathlib.Path, PathType(path_type='dir')], zipfile.ZipFile] = PosixPath('.'), warning_level: Literal[20, 30, 35, 50] = 50, log_warnings: bool = True, progressbar: Union[NoneType, bool, Callable[[], bioimageio.spec._internal.progress.Progressbar]] = None, raise_errors: bool = False)
cache: Union[genericache.disk_cache.DiskCache[bioimageio.spec._internal.root_url.RootHttpUrl], genericache.memory_cache.MemoryCache[bioimageio.spec._internal.root_url.RootHttpUrl], genericache.noop_cache.NoopCache[bioimageio.spec._internal.root_url.RootHttpUrl]] = <genericache.disk_cache.DiskCache object>
disable_cache: bool = False

Disable caching downloads to settings.cache_path and (re)download them to memory instead.

root: Union[bioimageio.spec._internal.root_url.RootHttpUrl, Annotated[pathlib.Path, PathType(path_type='dir')], zipfile.ZipFile] = PosixPath('.')

Url/directory/archive serving as base to resolve any relative file paths.

warning_level: Literal[20, 30, 35, 50] = 50

Treat warnings of severity s as validation errors if s >= warning_level.

log_warnings: bool = True

If True warnings are logged to the terminal

Note: This setting does not affect warning entries of a generated bioimageio.spec.ValidationSummary.

progressbar: Union[NoneType, bool, Callable[[], bioimageio.spec._internal.progress.Progressbar]] = None

Control any progressbar. (Currently this is only used for file downloads.)

Can be:

  • None: use a default tqdm progressbar (if not settings.CI)
  • True: use a default tqdm progressbar
  • False: disable the progressbar
  • callable: A callable that returns a tqdm-like progressbar.
raise_errors: bool = False

Directly raise any validation errors instead of aggregating errors and returning a bioimageio.spec.InvalidDescr. (for debugging)

summary
111    @property
112    def summary(self):
113        if isinstance(self.root, ZipFile):
114            if self.root.filename is None:
115                root = "in-memory"
116            else:
117                root = Path(self.root.filename)
118        else:
119            root = self.root
120
121        return ValidationContextSummary(
122            root=root,
123            file_name=self.file_name,
124            perform_io_checks=self.perform_io_checks,
125            known_files=copy(self.known_files),
126            update_hashes=self.update_hashes,
127        )
def replace( self, root: Union[bioimageio.spec._internal.root_url.RootHttpUrl, Annotated[pathlib.Path, PathType(path_type='dir')], zipfile.ZipFile, NoneType] = None, warning_level: Optional[Literal[20, 30, 35, 50]] = None, log_warnings: Optional[bool] = None, file_name: Optional[str] = None, perform_io_checks: Optional[bool] = None, known_files: Optional[Dict[str, Optional[bioimageio.spec._internal.io_basics.Sha256]]] = None, raise_errors: Optional[bool] = None, update_hashes: Optional[bool] = None, original_source_name: Optional[str] = None) -> Self:
136    def replace(  # TODO: probably use __replace__ when py>=3.13
137        self,
138        root: Optional[Union[RootHttpUrl, DirectoryPath, ZipFile]] = None,
139        warning_level: Optional[WarningLevel] = None,
140        log_warnings: Optional[bool] = None,
141        file_name: Optional[str] = None,
142        perform_io_checks: Optional[bool] = None,
143        known_files: Optional[Dict[str, Optional[Sha256]]] = None,
144        raise_errors: Optional[bool] = None,
145        update_hashes: Optional[bool] = None,
146        original_source_name: Optional[str] = None,
147    ) -> Self:
148        if known_files is None and root is not None and self.root != root:
149            # reset known files if root changes, but no new known_files are given
150            known_files = {}
151
152        return self.__class__(
153            root=self.root if root is None else root,
154            warning_level=(
155                self.warning_level if warning_level is None else warning_level
156            ),
157            log_warnings=self.log_warnings if log_warnings is None else log_warnings,
158            file_name=self.file_name if file_name is None else file_name,
159            perform_io_checks=(
160                self.perform_io_checks
161                if perform_io_checks is None
162                else perform_io_checks
163            ),
164            known_files=self.known_files if known_files is None else known_files,
165            raise_errors=self.raise_errors if raise_errors is None else raise_errors,
166            update_hashes=(
167                self.update_hashes if update_hashes is None else update_hashes
168            ),
169            original_source_name=(
170                self.original_source_name
171                if original_source_name is None
172                else original_source_name
173            ),
174        )
source_name: str
176    @property
177    def source_name(self) -> str:
178        if self.original_source_name is not None:
179            return self.original_source_name
180        elif self.file_name is None:
181            return "in-memory"
182        else:
183            try:
184                if isinstance(self.root, Path):
185                    source = (self.root / self.file_name).absolute()
186                else:
187                    parsed = urlsplit(str(self.root))
188                    path = list(parsed.path.strip("/").split("/")) + [self.file_name]
189                    source = urlunsplit(
190                        (
191                            parsed.scheme,
192                            parsed.netloc,
193                            "/".join(path),
194                            parsed.query,
195                            parsed.fragment,
196                        )
197                    )
198            except ValueError:
199                return self.file_name
200            else:
201                return str(source)
class ValidationSummary(pydantic.main.BaseModel):
243class ValidationSummary(BaseModel, extra="allow"):
244    """Summarizes output of all bioimageio validations and tests
245    for one specific `ResourceDescr` instance."""
246
247    name: str
248    """Name of the validation"""
249    source_name: str
250    """Source of the validated bioimageio description"""
251    id: Optional[str] = None
252    """ID of the resource being validated"""
253    type: str
254    """Type of the resource being validated"""
255    format_version: str
256    """Format version of the resource being validated"""
257    status: Literal["passed", "valid-format", "failed"]
258    """overall status of the bioimageio validation"""
259    metadata_completeness: Annotated[float, annotated_types.Interval(ge=0, le=1)] = 0.0
260    """Estimate of completeness of the metadata in the resource description.
261
262    Note: This completeness estimate may change with subsequent releases
263        and should be considered bioimageio.spec version specific.
264    """
265
266    details: List[ValidationDetail]
267    """List of validation details"""
268    env: Set[InstalledPackage] = Field(
269        default_factory=lambda: {
270            InstalledPackage(
271                name="bioimageio.spec",
272                version=VERSION,
273            )
274        }
275    )
276    """List of selected, relevant package versions"""
277
278    saved_conda_list: Optional[str] = None
279
280    @field_serializer("saved_conda_list")
281    def _save_conda_list(self, value: Optional[str]):
282        return self.conda_list
283
284    @property
285    def conda_list(self):
286        if self.saved_conda_list is None:
287            p = subprocess.run(
288                [CONDA_CMD, "list"],
289                stdout=subprocess.PIPE,
290                stderr=subprocess.STDOUT,
291                shell=False,
292                text=True,
293            )
294            self.saved_conda_list = (
295                p.stdout or f"`conda list` exited with {p.returncode}"
296            )
297
298        return self.saved_conda_list
299
300    @property
301    def status_icon(self):
302        if self.status == "passed":
303            return "✔️"
304        elif self.status == "valid-format":
305            return "🟡"
306        else:
307            return "❌"
308
309    @property
310    def errors(self) -> List[ErrorEntry]:
311        return list(chain.from_iterable(d.errors for d in self.details))
312
313    @property
314    def warnings(self) -> List[WarningEntry]:
315        return list(chain.from_iterable(d.warnings for d in self.details))
316
317    def format(
318        self,
319        *,
320        width: Optional[int] = None,
321        include_conda_list: bool = False,
322    ):
323        """Format summary as Markdown string"""
324        return self._format(
325            width=width, target="md", include_conda_list=include_conda_list
326        )
327
328    format_md = format
329
330    def format_html(
331        self,
332        *,
333        width: Optional[int] = None,
334        include_conda_list: bool = False,
335    ):
336        md_with_html = self._format(
337            target="html", width=width, include_conda_list=include_conda_list
338        )
339        return markdown.markdown(
340            md_with_html, extensions=["tables", "fenced_code", "nl2br"]
341        )
342
343    def display(
344        self,
345        *,
346        width: Optional[int] = None,
347        include_conda_list: bool = False,
348        tab_size: int = 4,
349        soft_wrap: bool = True,
350    ) -> None:
351        try:  # render as HTML in Jupyter notebook
352            from IPython.core.getipython import get_ipython
353            from IPython.display import (
354                display_html,  # pyright: ignore[reportUnknownVariableType]
355            )
356        except ImportError:
357            pass
358        else:
359            if get_ipython() is not None:
360                _ = display_html(
361                    self.format_html(
362                        width=width, include_conda_list=include_conda_list
363                    ),
364                    raw=True,
365                )
366                return
367
368        # render with rich
369        _ = self._format(
370            target=rich.console.Console(
371                width=width,
372                tab_size=tab_size,
373                soft_wrap=soft_wrap,
374            ),
375            width=width,
376            include_conda_list=include_conda_list,
377        )
378
379    def add_detail(self, detail: ValidationDetail):
380        if detail.status == "failed":
381            self.status = "failed"
382        elif detail.status != "passed":
383            assert_never(detail.status)
384
385        self.details.append(detail)
386
387    def log(
388        self,
389        to: Union[Literal["display"], Path, Sequence[Union[Literal["display"], Path]]],
390    ) -> List[Path]:
391        """Convenience method to display the validation summary in the terminal and/or
392        save it to disk. See `save` for details."""
393        if to == "display":
394            display = True
395            save_to = []
396        elif isinstance(to, Path):
397            display = False
398            save_to = [to]
399        else:
400            display = "display" in to
401            save_to = [p for p in to if p != "display"]
402
403        if display:
404            self.display()
405
406        return self.save(save_to)
407
408    def save(
409        self, path: Union[Path, Sequence[Path]] = Path("{id}_summary_{now}")
410    ) -> List[Path]:
411        """Save the validation/test summary in JSON, Markdown or HTML format.
412
413        Returns:
414            List of file paths the summary was saved to.
415
416        Notes:
417        - Format is chosen based on the suffix: `.json`, `.md`, `.html`.
418        - If **path** has no suffix it is assumed to be a direcotry to which a
419          `summary.json`, `summary.md` and `summary.html` are saved to.
420        """
421        if isinstance(path, (str, Path)):
422            path = [Path(path)]
423
424        # folder to file paths
425        file_paths: List[Path] = []
426        for p in path:
427            if p.suffix:
428                file_paths.append(p)
429            else:
430                file_paths.extend(
431                    [
432                        p / "summary.json",
433                        p / "summary.md",
434                        p / "summary.html",
435                    ]
436                )
437
438        now = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
439        for p in file_paths:
440            p = Path(str(p).format(id=self.id or "bioimageio", now=now))
441            if p.suffix == ".json":
442                self.save_json(p)
443            elif p.suffix == ".md":
444                self.save_markdown(p)
445            elif p.suffix == ".html":
446                self.save_html(p)
447            else:
448                raise ValueError(f"Unknown summary path suffix '{p.suffix}'")
449
450        return file_paths
451
452    def save_json(
453        self, path: Path = Path("summary.json"), *, indent: Optional[int] = 2
454    ):
455        """Save validation/test summary as JSON file."""
456        json_str = self.model_dump_json(indent=indent)
457        path.parent.mkdir(exist_ok=True, parents=True)
458        _ = path.write_text(json_str, encoding="utf-8")
459        logger.info("Saved summary to {}", path.absolute())
460
461    def save_markdown(self, path: Path = Path("summary.md")):
462        """Save rendered validation/test summary as Markdown file."""
463        formatted = self.format_md()
464        path.parent.mkdir(exist_ok=True, parents=True)
465        _ = path.write_text(formatted, encoding="utf-8")
466        logger.info("Saved Markdown formatted summary to {}", path.absolute())
467
468    def save_html(self, path: Path = Path("summary.html")) -> None:
469        """Save rendered validation/test summary as HTML file."""
470        path.parent.mkdir(exist_ok=True, parents=True)
471
472        html = self.format_html()
473        _ = path.write_text(html, encoding="utf-8")
474        logger.info("Saved HTML formatted summary to {}", path.absolute())
475
476    @classmethod
477    def load_json(cls, path: Path) -> Self:
478        """Load validation/test summary from a suitable JSON file"""
479        json_str = Path(path).read_text(encoding="utf-8")
480        return cls.model_validate_json(json_str)
481
482    @field_validator("env", mode="before")
483    def _convert_dict(cls, value: List[Union[List[str], Dict[str, str]]]):
484        """convert old env value for backwards compatibility"""
485        if isinstance(value, list):
486            return [
487                (
488                    (v["name"], v["version"], v.get("build", ""), v.get("channel", ""))
489                    if isinstance(v, dict) and "name" in v and "version" in v
490                    else v
491                )
492                for v in value
493            ]
494        else:
495            return value
496
497    def _format(
498        self,
499        *,
500        target: Union[rich.console.Console, Literal["html", "md"]],
501        width: Optional[int],
502        include_conda_list: bool,
503    ):
504        return _format_summary(
505            self,
506            target=target,
507            width=width or 100,
508            include_conda_list=include_conda_list,
509        )

Summarizes output of all bioimageio validations and tests for one specific ResourceDescr instance.

name: str

Name of the validation

source_name: str

Source of the validated bioimageio description

id: Optional[str]

ID of the resource being validated

type: str

Type of the resource being validated

format_version: str

Format version of the resource being validated

status: Literal['passed', 'valid-format', 'failed']

overall status of the bioimageio validation

metadata_completeness: Annotated[float, Interval(gt=None, ge=0, lt=None, le=1)]

Estimate of completeness of the metadata in the resource description.

Note: This completeness estimate may change with subsequent releases and should be considered bioimageio.spec version specific.

List of validation details

List of selected, relevant package versions

saved_conda_list: Optional[str]
conda_list
284    @property
285    def conda_list(self):
286        if self.saved_conda_list is None:
287            p = subprocess.run(
288                [CONDA_CMD, "list"],
289                stdout=subprocess.PIPE,
290                stderr=subprocess.STDOUT,
291                shell=False,
292                text=True,
293            )
294            self.saved_conda_list = (
295                p.stdout or f"`conda list` exited with {p.returncode}"
296            )
297
298        return self.saved_conda_list
status_icon
300    @property
301    def status_icon(self):
302        if self.status == "passed":
303            return "✔️"
304        elif self.status == "valid-format":
305            return "🟡"
306        else:
307            return "❌"
errors: List[bioimageio.spec.summary.ErrorEntry]
309    @property
310    def errors(self) -> List[ErrorEntry]:
311        return list(chain.from_iterable(d.errors for d in self.details))
warnings: List[bioimageio.spec.summary.WarningEntry]
313    @property
314    def warnings(self) -> List[WarningEntry]:
315        return list(chain.from_iterable(d.warnings for d in self.details))
def format( self, *, width: Optional[int] = None, include_conda_list: bool = False):
317    def format(
318        self,
319        *,
320        width: Optional[int] = None,
321        include_conda_list: bool = False,
322    ):
323        """Format summary as Markdown string"""
324        return self._format(
325            width=width, target="md", include_conda_list=include_conda_list
326        )

Format summary as Markdown string

def format_md( self, *, width: Optional[int] = None, include_conda_list: bool = False):
317    def format(
318        self,
319        *,
320        width: Optional[int] = None,
321        include_conda_list: bool = False,
322    ):
323        """Format summary as Markdown string"""
324        return self._format(
325            width=width, target="md", include_conda_list=include_conda_list
326        )

Format summary as Markdown string

def format_html( self, *, width: Optional[int] = None, include_conda_list: bool = False):
330    def format_html(
331        self,
332        *,
333        width: Optional[int] = None,
334        include_conda_list: bool = False,
335    ):
336        md_with_html = self._format(
337            target="html", width=width, include_conda_list=include_conda_list
338        )
339        return markdown.markdown(
340            md_with_html, extensions=["tables", "fenced_code", "nl2br"]
341        )
def display( self, *, width: Optional[int] = None, include_conda_list: bool = False, tab_size: int = 4, soft_wrap: bool = True) -> None:
343    def display(
344        self,
345        *,
346        width: Optional[int] = None,
347        include_conda_list: bool = False,
348        tab_size: int = 4,
349        soft_wrap: bool = True,
350    ) -> None:
351        try:  # render as HTML in Jupyter notebook
352            from IPython.core.getipython import get_ipython
353            from IPython.display import (
354                display_html,  # pyright: ignore[reportUnknownVariableType]
355            )
356        except ImportError:
357            pass
358        else:
359            if get_ipython() is not None:
360                _ = display_html(
361                    self.format_html(
362                        width=width, include_conda_list=include_conda_list
363                    ),
364                    raw=True,
365                )
366                return
367
368        # render with rich
369        _ = self._format(
370            target=rich.console.Console(
371                width=width,
372                tab_size=tab_size,
373                soft_wrap=soft_wrap,
374            ),
375            width=width,
376            include_conda_list=include_conda_list,
377        )
def add_detail(self, detail: bioimageio.spec.summary.ValidationDetail):
379    def add_detail(self, detail: ValidationDetail):
380        if detail.status == "failed":
381            self.status = "failed"
382        elif detail.status != "passed":
383            assert_never(detail.status)
384
385        self.details.append(detail)
def log( self, to: Union[Literal['display'], pathlib.Path, Sequence[Union[Literal['display'], pathlib.Path]]]) -> List[pathlib.Path]:
387    def log(
388        self,
389        to: Union[Literal["display"], Path, Sequence[Union[Literal["display"], Path]]],
390    ) -> List[Path]:
391        """Convenience method to display the validation summary in the terminal and/or
392        save it to disk. See `save` for details."""
393        if to == "display":
394            display = True
395            save_to = []
396        elif isinstance(to, Path):
397            display = False
398            save_to = [to]
399        else:
400            display = "display" in to
401            save_to = [p for p in to if p != "display"]
402
403        if display:
404            self.display()
405
406        return self.save(save_to)

Convenience method to display the validation summary in the terminal and/or save it to disk. See save for details.

def save( self, path: Union[pathlib.Path, Sequence[pathlib.Path]] = PosixPath('{id}_summary_{now}')) -> List[pathlib.Path]:
408    def save(
409        self, path: Union[Path, Sequence[Path]] = Path("{id}_summary_{now}")
410    ) -> List[Path]:
411        """Save the validation/test summary in JSON, Markdown or HTML format.
412
413        Returns:
414            List of file paths the summary was saved to.
415
416        Notes:
417        - Format is chosen based on the suffix: `.json`, `.md`, `.html`.
418        - If **path** has no suffix it is assumed to be a direcotry to which a
419          `summary.json`, `summary.md` and `summary.html` are saved to.
420        """
421        if isinstance(path, (str, Path)):
422            path = [Path(path)]
423
424        # folder to file paths
425        file_paths: List[Path] = []
426        for p in path:
427            if p.suffix:
428                file_paths.append(p)
429            else:
430                file_paths.extend(
431                    [
432                        p / "summary.json",
433                        p / "summary.md",
434                        p / "summary.html",
435                    ]
436                )
437
438        now = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ")
439        for p in file_paths:
440            p = Path(str(p).format(id=self.id or "bioimageio", now=now))
441            if p.suffix == ".json":
442                self.save_json(p)
443            elif p.suffix == ".md":
444                self.save_markdown(p)
445            elif p.suffix == ".html":
446                self.save_html(p)
447            else:
448                raise ValueError(f"Unknown summary path suffix '{p.suffix}'")
449
450        return file_paths

Save the validation/test summary in JSON, Markdown or HTML format.

Returns:

List of file paths the summary was saved to.

Notes:

  • Format is chosen based on the suffix: .json, .md, .html.
  • If path has no suffix it is assumed to be a direcotry to which a summary.json, summary.md and summary.html are saved to.
def save_json( self, path: pathlib.Path = PosixPath('summary.json'), *, indent: Optional[int] = 2):
452    def save_json(
453        self, path: Path = Path("summary.json"), *, indent: Optional[int] = 2
454    ):
455        """Save validation/test summary as JSON file."""
456        json_str = self.model_dump_json(indent=indent)
457        path.parent.mkdir(exist_ok=True, parents=True)
458        _ = path.write_text(json_str, encoding="utf-8")
459        logger.info("Saved summary to {}", path.absolute())

Save validation/test summary as JSON file.

def save_markdown(self, path: pathlib.Path = PosixPath('summary.md')):
461    def save_markdown(self, path: Path = Path("summary.md")):
462        """Save rendered validation/test summary as Markdown file."""
463        formatted = self.format_md()
464        path.parent.mkdir(exist_ok=True, parents=True)
465        _ = path.write_text(formatted, encoding="utf-8")
466        logger.info("Saved Markdown formatted summary to {}", path.absolute())

Save rendered validation/test summary as Markdown file.

def save_html(self, path: pathlib.Path = PosixPath('summary.html')) -> None:
468    def save_html(self, path: Path = Path("summary.html")) -> None:
469        """Save rendered validation/test summary as HTML file."""
470        path.parent.mkdir(exist_ok=True, parents=True)
471
472        html = self.format_html()
473        _ = path.write_text(html, encoding="utf-8")
474        logger.info("Saved HTML formatted summary to {}", path.absolute())

Save rendered validation/test summary as HTML file.

@classmethod
def load_json(cls, path: pathlib.Path) -> Self:
476    @classmethod
477    def load_json(cls, path: Path) -> Self:
478        """Load validation/test summary from a suitable JSON file"""
479        json_str = Path(path).read_text(encoding="utf-8")
480        return cls.model_validate_json(json_str)

Load validation/test summary from a suitable JSON file

model_config: ClassVar[pydantic.config.ConfigDict] = {'extra': 'allow'}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].