bioimageio.spec
Specifications for bioimage.io
This repository contains the specifications of the standard format defined by the bioimage.io community for the content (i.e., models, datasets and applications) in the bioimage.io website.
Each item in the content is always described using a YAML 1.2 file named rdf.yaml
or bioimageio.yaml
.
This rdf.yaml
\ bioimageio.yaml
--- along with the files referenced in it --- can be downloaded from or uploaded to the bioimage.io website and may be produced or consumed by bioimage.io-compatible consumers (e.g., image analysis software like ilastik).
These are the rules and format that bioimage.io-compatible resources must fulfill.
Note that the Python package PyYAML does not support YAML 1.2 . We therefore use and recommend ruyaml. For differences see https://ruamelyaml.readthedocs.io/en/latest/pyyaml.
Please also note that the best way to check whether your rdf.yaml
file is bioimage.io-compliant is to call bioimageio.core.validate
from the bioimageio.core Python package.
The bioimageio.core Python package also provides the bioimageio command line interface (CLI) with the validate
command:
bioimageio validate path/to/your/rdf.yaml
Format version overview
All bioimage.io description formats are defined as Pydantic models.
Type | Format Version | Documentation1 | Developer Documentation2 |
---|---|---|---|
model | 0.5 0.4 | model 0.5 model 0.4 | ModelDescr_v0_5 ModelDescr_v0_4 |
dataset | 0.3 0.2 | dataset 0.3 dataset 0.2 | DatasetDescr_v0_3 DatasetDescr_v0_2 |
notebook | 0.3 0.2 | notebook 0.3 notebook 0.2 | NotebookDescr_v0_3 NotebookDescr_v0_2 |
application | 0.3 0.2 | application 0.3 application 0.2 | ApplicationDescr_v0_3 ApplicationDescr_v0_2 |
generic | 0.3 0.2 | - | GenericDescr_v0_3 GenericDescr_v0_2 |
JSON Schema
Simplified descriptions are available as JSON Schema (generated with Pydantic):
bioimageio.spec version | JSON Schema | documentation3 |
---|---|---|
latest | bioimageio_schema_latest.json | latest documentation |
0.5 | bioimageio_schema_v0-5.json | 0.5 documentation |
Note: bioimageio_schema_v0-5.json and bioimageio_schema_latest.json are identical, but bioimageio_schema_latest.json will eventually refer to the future bioimageio_schema_v0-6.json
.
Flattened, interactive docs
A flattened view of the types used by the spec that also shows values constraints.
You can also generate these docs locally by running PYTHONPATH=./scripts python -m interactive_docs
Examples
We provide some bioimageio.yaml/rdf.yaml example files to describe models, applications, notebooks and datasets; more examples are available at bioimage.io. There is also an example notebook demonstrating how to programmatically access the models, applications, notebooks and datasets descriptions in Python. For integration of bioimageio resources we recommend the bioimageio.core Python package.
💁 Recommendations
- Use the bioimageio.core Python package to not only validate the format of your
bioimageio.yaml
/rdf.yaml
file, but also test and deploy it (e.g. model inference). - bioimageio.spec keeps evolving. Try to use and upgrade to the most current format version!
Note: The command line interface
bioimageio
(part of bioimageio.core) has theupdate-format
command to help you with that.
⌨ bioimageio command-line interface (CLI)
The bioimageio CLI has moved to bioimageio.core.
🖥 Installation
bioimageio.spec can be installed with either conda
or pip
.
We recommend installing bioimageio.core
instead to get access to the Python programmatic features available in the BioImage.IO community:
conda install -c conda-forge bioimageio.core
or
pip install -U bioimageio.core
Still, for a lighter package or just testing, you can install the bioimageio.spec
package solely:
conda install -c conda-forge bioimageio.spec
or
pip install -U bioimageio.spec
🏞 Environment variables
TODO: link to settings in dev docs
🤝 How to contribute
♥ Contributors
Made with contrib.rocks.
🛈 Versioining scheme
To keep the bioimageio.spec Python package version in sync with the (model) description format version, bioimageio.spec is versioned as MAJOR.MINRO.PATCH.LIB, where MAJOR.MINRO.PATCH correspond to the latest model description format version implemented and LIB may be bumpbed for library changes that do not affect the format version. This change was introduced with bioimageio.spec 0.5.3.1.
Δ Changelog
The changelog of the bioimageio.spec Python package and the changes to the resource description format it implements can be found here.
-
JSON Schema based documentation generated with json-schema-for-humans. ↩
-
JSON Schema based documentation generated with json-schema-for-humans. ↩
-
Part of the bioimageio.spec package documentation generated with pdoc. ↩
1""" 2.. include:: ../../README.md 3""" 4 5from . import ( 6 application, 7 common, 8 conda_env, 9 dataset, 10 generic, 11 model, 12 pretty_validation_errors, 13 summary, 14 utils, 15) 16from ._description import ( 17 LatestResourceDescr, 18 ResourceDescr, 19 SpecificResourceDescr, 20 build_description, 21 dump_description, 22 validate_format, 23) 24from ._get_conda_env import BioimageioCondaEnv, get_conda_env 25from ._internal import settings 26from ._internal.common_nodes import InvalidDescr 27from ._internal.constants import VERSION 28from ._internal.validation_context import ValidationContext, get_validation_context 29from ._io import ( 30 load_dataset_description, 31 load_description, 32 load_description_and_validate_format_only, 33 load_model_description, 34 save_bioimageio_yaml_only, 35 update_format, 36 update_hashes, 37) 38from ._package import ( 39 get_resource_package_content, 40 save_bioimageio_package, 41 save_bioimageio_package_as_folder, 42 save_bioimageio_package_to_stream, 43) 44from .application import AnyApplicationDescr, ApplicationDescr 45from .dataset import AnyDatasetDescr, DatasetDescr 46from .generic import AnyGenericDescr, GenericDescr 47from .model import AnyModelDescr, ModelDescr 48from .notebook import AnyNotebookDescr, NotebookDescr 49from .pretty_validation_errors import enable_pretty_validation_errors_in_ipynb 50from .summary import ValidationSummary 51 52__version__ = VERSION 53 54__all__ = [ 55 "__version__", 56 "AnyApplicationDescr", 57 "AnyDatasetDescr", 58 "AnyGenericDescr", 59 "AnyModelDescr", 60 "AnyNotebookDescr", 61 "application", 62 "ApplicationDescr", 63 "BioimageioCondaEnv", 64 "build_description", 65 "common", 66 "conda_env", 67 "dataset", 68 "DatasetDescr", 69 "dump_description", 70 "enable_pretty_validation_errors_in_ipynb", 71 "generic", 72 "GenericDescr", 73 "get_conda_env", 74 "get_resource_package_content", 75 "get_validation_context", 76 "InvalidDescr", 77 "LatestResourceDescr", 78 "load_dataset_description", 79 "load_description_and_validate_format_only", 80 "load_description", 81 "load_model_description", 82 "model", 83 "ModelDescr", 84 "NotebookDescr", 85 "pretty_validation_errors", 86 "ResourceDescr", 87 "save_bioimageio_package_as_folder", 88 "save_bioimageio_package_to_stream", 89 "save_bioimageio_package", 90 "save_bioimageio_yaml_only", 91 "settings", 92 "SpecificResourceDescr", 93 "summary", 94 "update_format", 95 "update_hashes", 96 "utils", 97 "validate_format", 98 "ValidationContext", 99 "ValidationSummary", 100]
33class ApplicationDescr(GenericDescrBase): 34 """Bioimage.io description of an application.""" 35 36 implemented_type: ClassVar[Literal["application"]] = "application" 37 if TYPE_CHECKING: 38 type: Literal["application"] = "application" 39 else: 40 type: Literal["application"] 41 42 id: Optional[ApplicationId] = None 43 """bioimage.io-wide unique resource identifier 44 assigned by bioimage.io; version **un**specific.""" 45 46 parent: Optional[ApplicationId] = None 47 """The description from which this one is derived""" 48 49 source: Annotated[ 50 Optional[FileSource_], 51 Field(description="URL or path to the source of the application"), 52 ] = None 53 """The primary source of the application"""
Bioimage.io description of an application.
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
The description from which this one is derived
The primary source of the application
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
Inherited Members
- bioimageio.spec.generic.v0_3.GenericDescrBase
- implemented_format_version
- convert_from_old_format_wo_validation
- documentation
- badges
- config
- bioimageio.spec.generic.v0_3.GenericModelDescrBase
- name
- description
- covers
- id_emoji
- attachments
- cite
- license
- git_repo
- icon
- links
- uploader
- maintainers
- check_maintainers_exist
- warn_about_tag_categories
- version
76class BioimageioCondaEnv(CondaEnv): 77 """A special `CondaEnv` that 78 - automatically adds bioimageio specific dependencies 79 - sorts dependencies 80 """ 81 82 @model_validator(mode="after") 83 def _normalize_bioimageio_conda_env(self): 84 """update a conda env such that we have bioimageio.core and sorted dependencies""" 85 for req_channel in ("conda-forge", "nodefaults"): 86 if req_channel not in self.channels: 87 self.channels.append(req_channel) 88 89 if "defaults" in self.channels: 90 warnings.warn("removing 'defaults' from conda-channels") 91 self.channels.remove("defaults") 92 93 if "pip" not in self.dependencies: 94 self.dependencies.append("pip") 95 96 for dep in self.dependencies: 97 if isinstance(dep, PipDeps): 98 pip_section = dep 99 pip_section.pip.sort() 100 break 101 else: 102 pip_section = None 103 104 if ( 105 pip_section is None 106 or not any(pd.startswith("bioimageio.core") for pd in pip_section.pip) 107 ) and not any( 108 d.startswith("bioimageio.core") 109 or d.startswith("conda-forge::bioimageio.core") 110 for d in self.dependencies 111 if not isinstance(d, PipDeps) 112 ): 113 self.dependencies.append("conda-forge::bioimageio.core") 114 115 self.dependencies.sort() 116 return self
A special CondaEnv
that
- automatically adds bioimageio specific dependencies
- sorts dependencies
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
Inherited Members
173def build_description( 174 content: BioimageioYamlContentView, 175 /, 176 *, 177 context: Optional[ValidationContext] = None, 178 format_version: Union[FormatVersionPlaceholder, str] = DISCOVER, 179) -> Union[ResourceDescr, InvalidDescr]: 180 """build a bioimage.io resource description from an RDF's content. 181 182 Use `load_description` if you want to build a resource description from an rdf.yaml 183 or bioimage.io zip-package. 184 185 Args: 186 content: loaded rdf.yaml file (loaded with YAML, not bioimageio.spec) 187 context: validation context to use during validation 188 format_version: (optional) use this argument to load the resource and 189 convert its metadata to a higher format_version 190 191 Returns: 192 An object holding all metadata of the bioimage.io resource 193 194 """ 195 196 return build_description_impl( 197 content, 198 context=context, 199 format_version=format_version, 200 get_rd_class=_get_rd_class, 201 )
build a bioimage.io resource description from an RDF's content.
Use load_description
if you want to build a resource description from an rdf.yaml
or bioimage.io zip-package.
Arguments:
- content: loaded rdf.yaml file (loaded with YAML, not bioimageio.spec)
- context: validation context to use during validation
- format_version: (optional) use this argument to load the resource and convert its metadata to a higher format_version
Returns:
An object holding all metadata of the bioimage.io resource
39class DatasetDescr(GenericDescrBase): 40 """A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage 41 processing. 42 """ 43 44 implemented_type: ClassVar[Literal["dataset"]] = "dataset" 45 if TYPE_CHECKING: 46 type: Literal["dataset"] = "dataset" 47 else: 48 type: Literal["dataset"] 49 50 id: Optional[DatasetId] = None 51 """bioimage.io-wide unique resource identifier 52 assigned by bioimage.io; version **un**specific.""" 53 54 parent: Optional[DatasetId] = None 55 """The description from which this one is derived""" 56 57 source: Optional[HttpUrl] = None 58 """"URL to the source of the dataset.""" 59 60 @model_validator(mode="before") 61 @classmethod 62 def _convert(cls, data: Dict[str, Any], /) -> Dict[str, Any]: 63 if ( 64 data.get("type") == "dataset" 65 and isinstance(fv := data.get("format_version"), str) 66 and fv.startswith("0.2.") 67 ): 68 old = DatasetDescr02.load(data) 69 if isinstance(old, InvalidDescr): 70 return data 71 72 return cast( 73 Dict[str, Any], 74 (cls if TYPE_CHECKING else dict)( 75 attachments=( 76 [] 77 if old.attachments is None 78 else [FileDescr(source=f) for f in old.attachments.files] 79 ), 80 authors=[ 81 _author_conv.convert_as_dict(a) for a in old.authors 82 ], # pyright: ignore[reportArgumentType] 83 badges=old.badges, 84 cite=[ 85 {"text": c.text, "doi": c.doi, "url": c.url} for c in old.cite 86 ], # pyright: ignore[reportArgumentType] 87 config=old.config, # pyright: ignore[reportArgumentType] 88 covers=old.covers, 89 description=old.description, 90 documentation=old.documentation, 91 format_version="0.3.0", 92 git_repo=old.git_repo, # pyright: ignore[reportArgumentType] 93 icon=old.icon, 94 id=None if old.id is None else DatasetId(old.id), 95 license=old.license, # type: ignore 96 links=old.links, 97 maintainers=[ 98 _maintainer_conv.convert_as_dict(m) for m in old.maintainers 99 ], # pyright: ignore[reportArgumentType] 100 name=old.name, 101 source=old.source, 102 tags=old.tags, 103 type=old.type, 104 uploader=old.uploader, 105 version=old.version, 106 **(old.model_extra or {}), 107 ), 108 ) 109 110 return data
A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage processing.
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
The description from which this one is derived
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
Inherited Members
- bioimageio.spec.generic.v0_3.GenericDescrBase
- implemented_format_version
- convert_from_old_format_wo_validation
- documentation
- badges
- config
- bioimageio.spec.generic.v0_3.GenericModelDescrBase
- name
- description
- covers
- id_emoji
- attachments
- cite
- license
- git_repo
- icon
- links
- uploader
- maintainers
- check_maintainers_exist
- warn_about_tag_categories
- version
66def dump_description( 67 rd: Union[ResourceDescr, InvalidDescr], 68 /, 69 *, 70 exclude_unset: bool = True, 71 exclude_defaults: bool = False, 72) -> BioimageioYamlContent: 73 """Converts a resource to a dictionary containing only simple types that can directly be serialzed to YAML. 74 75 Args: 76 rd: bioimageio resource description 77 exclude_unset: Exclude fields that have not explicitly be set. 78 exclude_defaults: Exclude fields that have the default value (even if set explicitly). 79 """ 80 return rd.model_dump( 81 mode="json", exclude_unset=exclude_unset, exclude_defaults=exclude_defaults 82 )
Converts a resource to a dictionary containing only simple types that can directly be serialzed to YAML.
Arguments:
- rd: bioimageio resource description
- exclude_unset: Exclude fields that have not explicitly be set.
- exclude_defaults: Exclude fields that have the default value (even if set explicitly).
92def enable_pretty_validation_errors_in_ipynb(): 93 """DEPRECATED; this is enabled by default at import time.""" 94 warnings.warn( 95 "deprecated, this is enabled by default at import time.", 96 DeprecationWarning, 97 stacklevel=2, 98 )
DEPRECATED; this is enabled by default at import time.
478class GenericDescr(GenericDescrBase, extra="ignore"): 479 """Specification of the fields used in a generic bioimage.io-compliant resource description file (RDF). 480 481 An RDF is a YAML file that describes a resource such as a model, a dataset, or a notebook. 482 Note that those resources are described with a type-specific RDF. 483 Use this generic resource description, if none of the known specific types matches your resource. 484 """ 485 486 implemented_type: ClassVar[Literal["generic"]] = "generic" 487 if TYPE_CHECKING: 488 type: Annotated[str, LowerCase] = "generic" 489 """The resource type assigns a broad category to the resource.""" 490 else: 491 type: Annotated[str, LowerCase] 492 """The resource type assigns a broad category to the resource.""" 493 494 id: Optional[ 495 Annotated[ResourceId, Field(examples=["affable-shark", "ambitious-sloth"])] 496 ] = None 497 """bioimage.io-wide unique resource identifier 498 assigned by bioimage.io; version **un**specific.""" 499 500 parent: Optional[ResourceId] = None 501 """The description from which this one is derived""" 502 503 source: Optional[HttpUrl] = None 504 """The primary source of the resource""" 505 506 @field_validator("type", mode="after") 507 @classmethod 508 def check_specific_types(cls, value: str) -> str: 509 if value in KNOWN_SPECIFIC_RESOURCE_TYPES: 510 raise ValueError( 511 f"Use the {value} description instead of this generic description for" 512 + f" your '{value}' resource." 513 ) 514 515 return value
Specification of the fields used in a generic bioimage.io-compliant resource description file (RDF).
An RDF is a YAML file that describes a resource such as a model, a dataset, or a notebook. Note that those resources are described with a type-specific RDF. Use this generic resource description, if none of the known specific types matches your resource.
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
The description from which this one is derived
506 @field_validator("type", mode="after") 507 @classmethod 508 def check_specific_types(cls, value: str) -> str: 509 if value in KNOWN_SPECIFIC_RESOURCE_TYPES: 510 raise ValueError( 511 f"Use the {value} description instead of this generic description for" 512 + f" your '{value}' resource." 513 ) 514 515 return value
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
Inherited Members
- bioimageio.spec.generic.v0_3.GenericDescrBase
- implemented_format_version
- convert_from_old_format_wo_validation
- documentation
- badges
- config
- bioimageio.spec.generic.v0_3.GenericModelDescrBase
- name
- description
- covers
- id_emoji
- attachments
- cite
- license
- git_repo
- icon
- links
- uploader
- maintainers
- check_maintainers_exist
- warn_about_tag_categories
- version
27def get_conda_env( 28 *, 29 entry: SupportedWeightsEntry, 30 env_name: Optional[Union[Literal["DROP"], str]] = None, 31) -> BioimageioCondaEnv: 32 """get the recommended Conda environment for a given weights entry description""" 33 if isinstance(entry, (v0_4.OnnxWeightsDescr, v0_5.OnnxWeightsDescr)): 34 conda_env = _get_default_onnx_env(opset_version=entry.opset_version) 35 elif isinstance( 36 entry, 37 ( 38 v0_4.PytorchStateDictWeightsDescr, 39 v0_5.PytorchStateDictWeightsDescr, 40 v0_4.TorchscriptWeightsDescr, 41 v0_5.TorchscriptWeightsDescr, 42 ), 43 ): 44 if ( 45 isinstance(entry, v0_5.TorchscriptWeightsDescr) 46 or entry.dependencies is None 47 ): 48 conda_env = _get_default_pytorch_env(pytorch_version=entry.pytorch_version) 49 else: 50 conda_env = _get_env_from_deps(entry.dependencies) 51 52 elif isinstance( 53 entry, 54 ( 55 v0_4.TensorflowSavedModelBundleWeightsDescr, 56 v0_5.TensorflowSavedModelBundleWeightsDescr, 57 ), 58 ): 59 if entry.dependencies is None: 60 conda_env = _get_default_tf_env(tensorflow_version=entry.tensorflow_version) 61 else: 62 conda_env = _get_env_from_deps(entry.dependencies) 63 elif isinstance( 64 entry, 65 (v0_4.KerasHdf5WeightsDescr, v0_5.KerasHdf5WeightsDescr), 66 ): 67 conda_env = _get_default_tf_env(tensorflow_version=entry.tensorflow_version) 68 else: 69 assert_never(entry) 70 71 if env_name == "DROP": 72 conda_env.name = None 73 elif env_name is not None: 74 conda_env.name = env_name 75 76 return conda_env
get the recommended Conda environment for a given weights entry description
40def get_resource_package_content( 41 rd: ResourceDescr, 42 /, 43 *, 44 bioimageio_yaml_file_name: FileName = BIOIMAGEIO_YAML, 45 weights_priority_order: Optional[Sequence[WeightsFormat]] = None, # model only 46) -> Dict[FileName, Union[HttpUrl, AbsoluteFilePath, BioimageioYamlContent, ZipPath]]: 47 ret: Dict[ 48 FileName, Union[HttpUrl, AbsoluteFilePath, BioimageioYamlContent, ZipPath] 49 ] = {} 50 for k, v in get_package_content( 51 rd, 52 bioimageio_yaml_file_name=bioimageio_yaml_file_name, 53 weights_priority_order=weights_priority_order, 54 ).items(): 55 if isinstance(v, FileDescr): 56 if isinstance(v.source, (Path, RelativeFilePath)): 57 ret[k] = v.source.absolute() 58 else: 59 ret[k] = v.source 60 61 else: 62 ret[k] = v 63 64 return ret
192def get_validation_context( 193 default: Optional[ValidationContext] = None, 194) -> ValidationContext: 195 """Get the currently active validation context (or a default)""" 196 return _validation_context_var.get() or default or ValidationContext()
Get the currently active validation context (or a default)
370class InvalidDescr( 371 ResourceDescrBase, 372 extra="allow", 373 title="An invalid resource description", 374): 375 """A representation of an invalid resource description""" 376 377 implemented_type: ClassVar[Literal["unknown"]] = "unknown" 378 if TYPE_CHECKING: # see NodeWithExplicitlySetFields 379 type: Any = "unknown" 380 else: 381 type: Any 382 383 implemented_format_version: ClassVar[Literal["unknown"]] = "unknown" 384 if TYPE_CHECKING: # see NodeWithExplicitlySetFields 385 format_version: Any = "unknown" 386 else: 387 format_version: Any
A representation of an invalid resource description
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
180def load_dataset_description( 181 source: Union[PermissiveFileSource, ZipFile], 182 /, 183 *, 184 format_version: Union[FormatVersionPlaceholder, str] = DISCOVER, 185 perform_io_checks: Optional[bool] = None, 186 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 187 sha256: Optional[Sha256] = None, 188) -> AnyDatasetDescr: 189 """same as `load_description`, but addtionally ensures that the loaded 190 description is valid and of type 'dataset'. 191 """ 192 rd = load_description( 193 source, 194 format_version=format_version, 195 perform_io_checks=perform_io_checks, 196 known_files=known_files, 197 sha256=sha256, 198 ) 199 return ensure_description_is_dataset(rd)
same as load_description
, but addtionally ensures that the loaded
description is valid and of type 'dataset'.
232def load_description_and_validate_format_only( 233 source: Union[PermissiveFileSource, ZipFile], 234 /, 235 *, 236 format_version: Union[FormatVersionPlaceholder, str] = DISCOVER, 237 perform_io_checks: Optional[bool] = None, 238 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 239 sha256: Optional[Sha256] = None, 240) -> ValidationSummary: 241 """same as `load_description`, but only return the validation summary. 242 243 Returns: 244 Validation summary of the bioimage.io resource found at `source`. 245 246 """ 247 rd = load_description( 248 source, 249 format_version=format_version, 250 perform_io_checks=perform_io_checks, 251 known_files=known_files, 252 sha256=sha256, 253 ) 254 assert rd.validation_summary is not None 255 return rd.validation_summary
same as load_description
, but only return the validation summary.
Returns:
Validation summary of the bioimage.io resource found at
source
.
57def load_description( 58 source: Union[PermissiveFileSource, ZipFile], 59 /, 60 *, 61 format_version: Union[FormatVersionPlaceholder, str] = DISCOVER, 62 perform_io_checks: Optional[bool] = None, 63 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 64 sha256: Optional[Sha256] = None, 65) -> Union[ResourceDescr, InvalidDescr]: 66 """load a bioimage.io resource description 67 68 Args: 69 source: Path or URL to an rdf.yaml or a bioimage.io package 70 (zip-file with rdf.yaml in it). 71 format_version: (optional) Use this argument to load the resource and 72 convert its metadata to a higher format_version. 73 perform_io_checks: Wether or not to perform validation that requires file io, 74 e.g. downloading a remote files. The existence of local 75 absolute file paths is still being checked. 76 known_files: Allows to bypass download and hashing of referenced files 77 (even if perform_io_checks is True). 78 Checked files will be added to this dictionary 79 with their SHA-256 value. 80 sha256: Optional SHA-256 value of **source** 81 82 Returns: 83 An object holding all metadata of the bioimage.io resource 84 85 """ 86 if isinstance(source, ResourceDescrBase): 87 name = getattr(source, "name", f"{str(source)[:10]}...") 88 logger.warning("returning already loaded description '{}' as is", name) 89 return source # pyright: ignore[reportReturnType] 90 91 opened = open_bioimageio_yaml(source, sha256=sha256) 92 93 context = get_validation_context().replace( 94 root=opened.original_root, 95 file_name=opened.original_file_name, 96 perform_io_checks=perform_io_checks, 97 known_files=known_files, 98 ) 99 100 return build_description( 101 opened.content, 102 context=context, 103 format_version=format_version, 104 )
load a bioimage.io resource description
Arguments:
- source: Path or URL to an rdf.yaml or a bioimage.io package (zip-file with rdf.yaml in it).
- format_version: (optional) Use this argument to load the resource and convert its metadata to a higher format_version.
- perform_io_checks: Wether or not to perform validation that requires file io, e.g. downloading a remote files. The existence of local absolute file paths is still being checked.
- known_files: Allows to bypass download and hashing of referenced files (even if perform_io_checks is True). Checked files will be added to this dictionary with their SHA-256 value.
- sha256: Optional SHA-256 value of source
Returns:
An object holding all metadata of the bioimage.io resource
131def load_model_description( 132 source: Union[PermissiveFileSource, ZipFile], 133 /, 134 *, 135 format_version: Union[FormatVersionPlaceholder, str] = DISCOVER, 136 perform_io_checks: Optional[bool] = None, 137 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 138 sha256: Optional[Sha256] = None, 139) -> AnyModelDescr: 140 """same as `load_description`, but addtionally ensures that the loaded 141 description is valid and of type 'model'. 142 143 Raises: 144 ValueError: for invalid or non-model resources 145 """ 146 rd = load_description( 147 source, 148 format_version=format_version, 149 perform_io_checks=perform_io_checks, 150 known_files=known_files, 151 sha256=sha256, 152 ) 153 return ensure_description_is_model(rd)
same as load_description
, but addtionally ensures that the loaded
description is valid and of type 'model'.
Raises:
- ValueError: for invalid or non-model resources
2531class ModelDescr(GenericModelDescrBase): 2532 """Specification of the fields used in a bioimage.io-compliant RDF to describe AI models with pretrained weights. 2533 These fields are typically stored in a YAML file which we call a model resource description file (model RDF). 2534 """ 2535 2536 implemented_format_version: ClassVar[Literal["0.5.4"]] = "0.5.4" 2537 if TYPE_CHECKING: 2538 format_version: Literal["0.5.4"] = "0.5.4" 2539 else: 2540 format_version: Literal["0.5.4"] 2541 """Version of the bioimage.io model description specification used. 2542 When creating a new model always use the latest micro/patch version described here. 2543 The `format_version` is important for any consumer software to understand how to parse the fields. 2544 """ 2545 2546 implemented_type: ClassVar[Literal["model"]] = "model" 2547 if TYPE_CHECKING: 2548 type: Literal["model"] = "model" 2549 else: 2550 type: Literal["model"] 2551 """Specialized resource type 'model'""" 2552 2553 id: Optional[ModelId] = None 2554 """bioimage.io-wide unique resource identifier 2555 assigned by bioimage.io; version **un**specific.""" 2556 2557 authors: NotEmpty[List[Author]] 2558 """The authors are the creators of the model RDF and the primary points of contact.""" 2559 2560 documentation: FileSource_documentation 2561 """URL or relative path to a markdown file with additional documentation. 2562 The recommended documentation file name is `README.md`. An `.md` suffix is mandatory. 2563 The documentation should include a '#[#] Validation' (sub)section 2564 with details on how to quantitatively validate the model on unseen data.""" 2565 2566 @field_validator("documentation", mode="after") 2567 @classmethod 2568 def _validate_documentation( 2569 cls, value: FileSource_documentation 2570 ) -> FileSource_documentation: 2571 if not get_validation_context().perform_io_checks: 2572 return value 2573 2574 doc_reader = get_reader(value) 2575 doc_content = doc_reader.read().decode(encoding="utf-8") 2576 if not re.search("#.*[vV]alidation", doc_content): 2577 issue_warning( 2578 "No '# Validation' (sub)section found in {value}.", 2579 value=value, 2580 field="documentation", 2581 ) 2582 2583 return value 2584 2585 inputs: NotEmpty[Sequence[InputTensorDescr]] 2586 """Describes the input tensors expected by this model.""" 2587 2588 @field_validator("inputs", mode="after") 2589 @classmethod 2590 def _validate_input_axes( 2591 cls, inputs: Sequence[InputTensorDescr] 2592 ) -> Sequence[InputTensorDescr]: 2593 input_size_refs = cls._get_axes_with_independent_size(inputs) 2594 2595 for i, ipt in enumerate(inputs): 2596 valid_independent_refs: Dict[ 2597 Tuple[TensorId, AxisId], 2598 Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]], 2599 ] = { 2600 **{ 2601 (ipt.id, a.id): (ipt, a, a.size) 2602 for a in ipt.axes 2603 if not isinstance(a, BatchAxis) 2604 and isinstance(a.size, (int, ParameterizedSize)) 2605 }, 2606 **input_size_refs, 2607 } 2608 for a, ax in enumerate(ipt.axes): 2609 cls._validate_axis( 2610 "inputs", 2611 i=i, 2612 tensor_id=ipt.id, 2613 a=a, 2614 axis=ax, 2615 valid_independent_refs=valid_independent_refs, 2616 ) 2617 return inputs 2618 2619 @staticmethod 2620 def _validate_axis( 2621 field_name: str, 2622 i: int, 2623 tensor_id: TensorId, 2624 a: int, 2625 axis: AnyAxis, 2626 valid_independent_refs: Dict[ 2627 Tuple[TensorId, AxisId], 2628 Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]], 2629 ], 2630 ): 2631 if isinstance(axis, BatchAxis) or isinstance( 2632 axis.size, (int, ParameterizedSize, DataDependentSize) 2633 ): 2634 return 2635 elif not isinstance(axis.size, SizeReference): 2636 assert_never(axis.size) 2637 2638 # validate axis.size SizeReference 2639 ref = (axis.size.tensor_id, axis.size.axis_id) 2640 if ref not in valid_independent_refs: 2641 raise ValueError( 2642 "Invalid tensor axis reference at" 2643 + f" {field_name}[{i}].axes[{a}].size: {axis.size}." 2644 ) 2645 if ref == (tensor_id, axis.id): 2646 raise ValueError( 2647 "Self-referencing not allowed for" 2648 + f" {field_name}[{i}].axes[{a}].size: {axis.size}" 2649 ) 2650 if axis.type == "channel": 2651 if valid_independent_refs[ref][1].type != "channel": 2652 raise ValueError( 2653 "A channel axis' size may only reference another fixed size" 2654 + " channel axis." 2655 ) 2656 if isinstance(axis.channel_names, str) and "{i}" in axis.channel_names: 2657 ref_size = valid_independent_refs[ref][2] 2658 assert isinstance(ref_size, int), ( 2659 "channel axis ref (another channel axis) has to specify fixed" 2660 + " size" 2661 ) 2662 generated_channel_names = [ 2663 Identifier(axis.channel_names.format(i=i)) 2664 for i in range(1, ref_size + 1) 2665 ] 2666 axis.channel_names = generated_channel_names 2667 2668 if (ax_unit := getattr(axis, "unit", None)) != ( 2669 ref_unit := getattr(valid_independent_refs[ref][1], "unit", None) 2670 ): 2671 raise ValueError( 2672 "The units of an axis and its reference axis need to match, but" 2673 + f" '{ax_unit}' != '{ref_unit}'." 2674 ) 2675 ref_axis = valid_independent_refs[ref][1] 2676 if isinstance(ref_axis, BatchAxis): 2677 raise ValueError( 2678 f"Invalid reference axis '{ref_axis.id}' for {tensor_id}.{axis.id}" 2679 + " (a batch axis is not allowed as reference)." 2680 ) 2681 2682 if isinstance(axis, WithHalo): 2683 min_size = axis.size.get_size(axis, ref_axis, n=0) 2684 if (min_size - 2 * axis.halo) < 1: 2685 raise ValueError( 2686 f"axis {axis.id} with minimum size {min_size} is too small for halo" 2687 + f" {axis.halo}." 2688 ) 2689 2690 input_halo = axis.halo * axis.scale / ref_axis.scale 2691 if input_halo != int(input_halo) or input_halo % 2 == 1: 2692 raise ValueError( 2693 f"input_halo {input_halo} (output_halo {axis.halo} *" 2694 + f" output_scale {axis.scale} / input_scale {ref_axis.scale})" 2695 + f" {tensor_id}.{axis.id}." 2696 ) 2697 2698 @model_validator(mode="after") 2699 def _validate_test_tensors(self) -> Self: 2700 if not get_validation_context().perform_io_checks: 2701 return self 2702 2703 test_output_arrays = [load_array(descr.test_tensor) for descr in self.outputs] 2704 test_input_arrays = [load_array(descr.test_tensor) for descr in self.inputs] 2705 2706 tensors = { 2707 descr.id: (descr, array) 2708 for descr, array in zip( 2709 chain(self.inputs, self.outputs), test_input_arrays + test_output_arrays 2710 ) 2711 } 2712 validate_tensors(tensors, tensor_origin="test_tensor") 2713 2714 output_arrays = { 2715 descr.id: array for descr, array in zip(self.outputs, test_output_arrays) 2716 } 2717 for rep_tol in self.config.bioimageio.reproducibility_tolerance: 2718 if not rep_tol.absolute_tolerance: 2719 continue 2720 2721 if rep_tol.output_ids: 2722 out_arrays = { 2723 oid: a 2724 for oid, a in output_arrays.items() 2725 if oid in rep_tol.output_ids 2726 } 2727 else: 2728 out_arrays = output_arrays 2729 2730 for out_id, array in out_arrays.items(): 2731 if rep_tol.absolute_tolerance > (max_test_value := array.max()) * 0.01: 2732 raise ValueError( 2733 "config.bioimageio.reproducibility_tolerance.absolute_tolerance=" 2734 + f"{rep_tol.absolute_tolerance} > 0.01*{max_test_value}" 2735 + f" (1% of the maximum value of the test tensor '{out_id}')" 2736 ) 2737 2738 return self 2739 2740 @model_validator(mode="after") 2741 def _validate_tensor_references_in_proc_kwargs(self, info: ValidationInfo) -> Self: 2742 ipt_refs = {t.id for t in self.inputs} 2743 out_refs = {t.id for t in self.outputs} 2744 for ipt in self.inputs: 2745 for p in ipt.preprocessing: 2746 ref = p.kwargs.get("reference_tensor") 2747 if ref is None: 2748 continue 2749 if ref not in ipt_refs: 2750 raise ValueError( 2751 f"`reference_tensor` '{ref}' not found. Valid input tensor" 2752 + f" references are: {ipt_refs}." 2753 ) 2754 2755 for out in self.outputs: 2756 for p in out.postprocessing: 2757 ref = p.kwargs.get("reference_tensor") 2758 if ref is None: 2759 continue 2760 2761 if ref not in ipt_refs and ref not in out_refs: 2762 raise ValueError( 2763 f"`reference_tensor` '{ref}' not found. Valid tensor references" 2764 + f" are: {ipt_refs | out_refs}." 2765 ) 2766 2767 return self 2768 2769 # TODO: use validate funcs in validate_test_tensors 2770 # def validate_inputs(self, input_tensors: Mapping[TensorId, NDArray[Any]]) -> Mapping[TensorId, NDArray[Any]]: 2771 2772 name: Annotated[ 2773 Annotated[ 2774 str, RestrictCharacters(string.ascii_letters + string.digits + "_+- ()") 2775 ], 2776 MinLen(5), 2777 MaxLen(128), 2778 warn(MaxLen(64), "Name longer than 64 characters.", INFO), 2779 ] 2780 """A human-readable name of this model. 2781 It should be no longer than 64 characters 2782 and may only contain letter, number, underscore, minus, parentheses and spaces. 2783 We recommend to chose a name that refers to the model's task and image modality. 2784 """ 2785 2786 outputs: NotEmpty[Sequence[OutputTensorDescr]] 2787 """Describes the output tensors.""" 2788 2789 @field_validator("outputs", mode="after") 2790 @classmethod 2791 def _validate_tensor_ids( 2792 cls, outputs: Sequence[OutputTensorDescr], info: ValidationInfo 2793 ) -> Sequence[OutputTensorDescr]: 2794 tensor_ids = [ 2795 t.id for t in info.data.get("inputs", []) + info.data.get("outputs", []) 2796 ] 2797 duplicate_tensor_ids: List[str] = [] 2798 seen: Set[str] = set() 2799 for t in tensor_ids: 2800 if t in seen: 2801 duplicate_tensor_ids.append(t) 2802 2803 seen.add(t) 2804 2805 if duplicate_tensor_ids: 2806 raise ValueError(f"Duplicate tensor ids: {duplicate_tensor_ids}") 2807 2808 return outputs 2809 2810 @staticmethod 2811 def _get_axes_with_parameterized_size( 2812 io: Union[Sequence[InputTensorDescr], Sequence[OutputTensorDescr]], 2813 ): 2814 return { 2815 f"{t.id}.{a.id}": (t, a, a.size) 2816 for t in io 2817 for a in t.axes 2818 if not isinstance(a, BatchAxis) and isinstance(a.size, ParameterizedSize) 2819 } 2820 2821 @staticmethod 2822 def _get_axes_with_independent_size( 2823 io: Union[Sequence[InputTensorDescr], Sequence[OutputTensorDescr]], 2824 ): 2825 return { 2826 (t.id, a.id): (t, a, a.size) 2827 for t in io 2828 for a in t.axes 2829 if not isinstance(a, BatchAxis) 2830 and isinstance(a.size, (int, ParameterizedSize)) 2831 } 2832 2833 @field_validator("outputs", mode="after") 2834 @classmethod 2835 def _validate_output_axes( 2836 cls, outputs: List[OutputTensorDescr], info: ValidationInfo 2837 ) -> List[OutputTensorDescr]: 2838 input_size_refs = cls._get_axes_with_independent_size( 2839 info.data.get("inputs", []) 2840 ) 2841 output_size_refs = cls._get_axes_with_independent_size(outputs) 2842 2843 for i, out in enumerate(outputs): 2844 valid_independent_refs: Dict[ 2845 Tuple[TensorId, AxisId], 2846 Tuple[TensorDescr, AnyAxis, Union[int, ParameterizedSize]], 2847 ] = { 2848 **{ 2849 (out.id, a.id): (out, a, a.size) 2850 for a in out.axes 2851 if not isinstance(a, BatchAxis) 2852 and isinstance(a.size, (int, ParameterizedSize)) 2853 }, 2854 **input_size_refs, 2855 **output_size_refs, 2856 } 2857 for a, ax in enumerate(out.axes): 2858 cls._validate_axis( 2859 "outputs", 2860 i, 2861 out.id, 2862 a, 2863 ax, 2864 valid_independent_refs=valid_independent_refs, 2865 ) 2866 2867 return outputs 2868 2869 packaged_by: List[Author] = Field( 2870 default_factory=cast(Callable[[], List[Author]], list) 2871 ) 2872 """The persons that have packaged and uploaded this model. 2873 Only required if those persons differ from the `authors`.""" 2874 2875 parent: Optional[LinkedModel] = None 2876 """The model from which this model is derived, e.g. by fine-tuning the weights.""" 2877 2878 @model_validator(mode="after") 2879 def _validate_parent_is_not_self(self) -> Self: 2880 if self.parent is not None and self.parent.id == self.id: 2881 raise ValueError("A model description may not reference itself as parent.") 2882 2883 return self 2884 2885 run_mode: Annotated[ 2886 Optional[RunMode], 2887 warn(None, "Run mode '{value}' has limited support across consumer softwares."), 2888 ] = None 2889 """Custom run mode for this model: for more complex prediction procedures like test time 2890 data augmentation that currently cannot be expressed in the specification. 2891 No standard run modes are defined yet.""" 2892 2893 timestamp: Datetime = Field(default_factory=Datetime.now) 2894 """Timestamp in [ISO 8601](#https://en.wikipedia.org/wiki/ISO_8601) format 2895 with a few restrictions listed [here](https://docs.python.org/3/library/datetime.html#datetime.datetime.fromisoformat). 2896 (In Python a datetime object is valid, too).""" 2897 2898 training_data: Annotated[ 2899 Union[None, LinkedDataset, DatasetDescr, DatasetDescr02], 2900 Field(union_mode="left_to_right"), 2901 ] = None 2902 """The dataset used to train this model""" 2903 2904 weights: Annotated[WeightsDescr, WrapSerializer(package_weights)] 2905 """The weights for this model. 2906 Weights can be given for different formats, but should otherwise be equivalent. 2907 The available weight formats determine which consumers can use this model.""" 2908 2909 config: Config = Field(default_factory=Config) 2910 2911 @model_validator(mode="after") 2912 def _add_default_cover(self) -> Self: 2913 if not get_validation_context().perform_io_checks or self.covers: 2914 return self 2915 2916 try: 2917 generated_covers = generate_covers( 2918 [(t, load_array(t.test_tensor)) for t in self.inputs], 2919 [(t, load_array(t.test_tensor)) for t in self.outputs], 2920 ) 2921 except Exception as e: 2922 issue_warning( 2923 "Failed to generate cover image(s): {e}", 2924 value=self.covers, 2925 msg_context=dict(e=e), 2926 field="covers", 2927 ) 2928 else: 2929 self.covers.extend(generated_covers) 2930 2931 return self 2932 2933 def get_input_test_arrays(self) -> List[NDArray[Any]]: 2934 data = [load_array(ipt.test_tensor) for ipt in self.inputs] 2935 assert all(isinstance(d, np.ndarray) for d in data) 2936 return data 2937 2938 def get_output_test_arrays(self) -> List[NDArray[Any]]: 2939 data = [load_array(out.test_tensor) for out in self.outputs] 2940 assert all(isinstance(d, np.ndarray) for d in data) 2941 return data 2942 2943 @staticmethod 2944 def get_batch_size(tensor_sizes: Mapping[TensorId, Mapping[AxisId, int]]) -> int: 2945 batch_size = 1 2946 tensor_with_batchsize: Optional[TensorId] = None 2947 for tid in tensor_sizes: 2948 for aid, s in tensor_sizes[tid].items(): 2949 if aid != BATCH_AXIS_ID or s == 1 or s == batch_size: 2950 continue 2951 2952 if batch_size != 1: 2953 assert tensor_with_batchsize is not None 2954 raise ValueError( 2955 f"batch size mismatch for tensors '{tensor_with_batchsize}' ({batch_size}) and '{tid}' ({s})" 2956 ) 2957 2958 batch_size = s 2959 tensor_with_batchsize = tid 2960 2961 return batch_size 2962 2963 def get_output_tensor_sizes( 2964 self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]] 2965 ) -> Dict[TensorId, Dict[AxisId, Union[int, _DataDepSize]]]: 2966 """Returns the tensor output sizes for given **input_sizes**. 2967 Only if **input_sizes** has a valid input shape, the tensor output size is exact. 2968 Otherwise it might be larger than the actual (valid) output""" 2969 batch_size = self.get_batch_size(input_sizes) 2970 ns = self.get_ns(input_sizes) 2971 2972 tensor_sizes = self.get_tensor_sizes(ns, batch_size=batch_size) 2973 return tensor_sizes.outputs 2974 2975 def get_ns(self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]): 2976 """get parameter `n` for each parameterized axis 2977 such that the valid input size is >= the given input size""" 2978 ret: Dict[Tuple[TensorId, AxisId], ParameterizedSize_N] = {} 2979 axes = {t.id: {a.id: a for a in t.axes} for t in self.inputs} 2980 for tid in input_sizes: 2981 for aid, s in input_sizes[tid].items(): 2982 size_descr = axes[tid][aid].size 2983 if isinstance(size_descr, ParameterizedSize): 2984 ret[(tid, aid)] = size_descr.get_n(s) 2985 elif size_descr is None or isinstance(size_descr, (int, SizeReference)): 2986 pass 2987 else: 2988 assert_never(size_descr) 2989 2990 return ret 2991 2992 def get_tensor_sizes( 2993 self, ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], batch_size: int 2994 ) -> _TensorSizes: 2995 axis_sizes = self.get_axis_sizes(ns, batch_size=batch_size) 2996 return _TensorSizes( 2997 { 2998 t: { 2999 aa: axis_sizes.inputs[(tt, aa)] 3000 for tt, aa in axis_sizes.inputs 3001 if tt == t 3002 } 3003 for t in {tt for tt, _ in axis_sizes.inputs} 3004 }, 3005 { 3006 t: { 3007 aa: axis_sizes.outputs[(tt, aa)] 3008 for tt, aa in axis_sizes.outputs 3009 if tt == t 3010 } 3011 for t in {tt for tt, _ in axis_sizes.outputs} 3012 }, 3013 ) 3014 3015 def get_axis_sizes( 3016 self, 3017 ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], 3018 batch_size: Optional[int] = None, 3019 *, 3020 max_input_shape: Optional[Mapping[Tuple[TensorId, AxisId], int]] = None, 3021 ) -> _AxisSizes: 3022 """Determine input and output block shape for scale factors **ns** 3023 of parameterized input sizes. 3024 3025 Args: 3026 ns: Scale factor `n` for each axis (keyed by (tensor_id, axis_id)) 3027 that is parameterized as `size = min + n * step`. 3028 batch_size: The desired size of the batch dimension. 3029 If given **batch_size** overwrites any batch size present in 3030 **max_input_shape**. Default 1. 3031 max_input_shape: Limits the derived block shapes. 3032 Each axis for which the input size, parameterized by `n`, is larger 3033 than **max_input_shape** is set to the minimal value `n_min` for which 3034 this is still true. 3035 Use this for small input samples or large values of **ns**. 3036 Or simply whenever you know the full input shape. 3037 3038 Returns: 3039 Resolved axis sizes for model inputs and outputs. 3040 """ 3041 max_input_shape = max_input_shape or {} 3042 if batch_size is None: 3043 for (_t_id, a_id), s in max_input_shape.items(): 3044 if a_id == BATCH_AXIS_ID: 3045 batch_size = s 3046 break 3047 else: 3048 batch_size = 1 3049 3050 all_axes = { 3051 t.id: {a.id: a for a in t.axes} for t in chain(self.inputs, self.outputs) 3052 } 3053 3054 inputs: Dict[Tuple[TensorId, AxisId], int] = {} 3055 outputs: Dict[Tuple[TensorId, AxisId], Union[int, _DataDepSize]] = {} 3056 3057 def get_axis_size(a: Union[InputAxis, OutputAxis]): 3058 if isinstance(a, BatchAxis): 3059 if (t_descr.id, a.id) in ns: 3060 logger.warning( 3061 "Ignoring unexpected size increment factor (n) for batch axis" 3062 + " of tensor '{}'.", 3063 t_descr.id, 3064 ) 3065 return batch_size 3066 elif isinstance(a.size, int): 3067 if (t_descr.id, a.id) in ns: 3068 logger.warning( 3069 "Ignoring unexpected size increment factor (n) for fixed size" 3070 + " axis '{}' of tensor '{}'.", 3071 a.id, 3072 t_descr.id, 3073 ) 3074 return a.size 3075 elif isinstance(a.size, ParameterizedSize): 3076 if (t_descr.id, a.id) not in ns: 3077 raise ValueError( 3078 "Size increment factor (n) missing for parametrized axis" 3079 + f" '{a.id}' of tensor '{t_descr.id}'." 3080 ) 3081 n = ns[(t_descr.id, a.id)] 3082 s_max = max_input_shape.get((t_descr.id, a.id)) 3083 if s_max is not None: 3084 n = min(n, a.size.get_n(s_max)) 3085 3086 return a.size.get_size(n) 3087 3088 elif isinstance(a.size, SizeReference): 3089 if (t_descr.id, a.id) in ns: 3090 logger.warning( 3091 "Ignoring unexpected size increment factor (n) for axis '{}'" 3092 + " of tensor '{}' with size reference.", 3093 a.id, 3094 t_descr.id, 3095 ) 3096 assert not isinstance(a, BatchAxis) 3097 ref_axis = all_axes[a.size.tensor_id][a.size.axis_id] 3098 assert not isinstance(ref_axis, BatchAxis) 3099 ref_key = (a.size.tensor_id, a.size.axis_id) 3100 ref_size = inputs.get(ref_key, outputs.get(ref_key)) 3101 assert ref_size is not None, ref_key 3102 assert not isinstance(ref_size, _DataDepSize), ref_key 3103 return a.size.get_size( 3104 axis=a, 3105 ref_axis=ref_axis, 3106 ref_size=ref_size, 3107 ) 3108 elif isinstance(a.size, DataDependentSize): 3109 if (t_descr.id, a.id) in ns: 3110 logger.warning( 3111 "Ignoring unexpected increment factor (n) for data dependent" 3112 + " size axis '{}' of tensor '{}'.", 3113 a.id, 3114 t_descr.id, 3115 ) 3116 return _DataDepSize(a.size.min, a.size.max) 3117 else: 3118 assert_never(a.size) 3119 3120 # first resolve all , but the `SizeReference` input sizes 3121 for t_descr in self.inputs: 3122 for a in t_descr.axes: 3123 if not isinstance(a.size, SizeReference): 3124 s = get_axis_size(a) 3125 assert not isinstance(s, _DataDepSize) 3126 inputs[t_descr.id, a.id] = s 3127 3128 # resolve all other input axis sizes 3129 for t_descr in self.inputs: 3130 for a in t_descr.axes: 3131 if isinstance(a.size, SizeReference): 3132 s = get_axis_size(a) 3133 assert not isinstance(s, _DataDepSize) 3134 inputs[t_descr.id, a.id] = s 3135 3136 # resolve all output axis sizes 3137 for t_descr in self.outputs: 3138 for a in t_descr.axes: 3139 assert not isinstance(a.size, ParameterizedSize) 3140 s = get_axis_size(a) 3141 outputs[t_descr.id, a.id] = s 3142 3143 return _AxisSizes(inputs=inputs, outputs=outputs) 3144 3145 @model_validator(mode="before") 3146 @classmethod 3147 def _convert(cls, data: Dict[str, Any]) -> Dict[str, Any]: 3148 cls.convert_from_old_format_wo_validation(data) 3149 return data 3150 3151 @classmethod 3152 def convert_from_old_format_wo_validation(cls, data: Dict[str, Any]) -> None: 3153 """Convert metadata following an older format version to this classes' format 3154 without validating the result. 3155 """ 3156 if ( 3157 data.get("type") == "model" 3158 and isinstance(fv := data.get("format_version"), str) 3159 and fv.count(".") == 2 3160 ): 3161 fv_parts = fv.split(".") 3162 if any(not p.isdigit() for p in fv_parts): 3163 return 3164 3165 fv_tuple = tuple(map(int, fv_parts)) 3166 3167 assert cls.implemented_format_version_tuple[0:2] == (0, 5) 3168 if fv_tuple[:2] in ((0, 3), (0, 4)): 3169 m04 = _ModelDescr_v0_4.load(data) 3170 if isinstance(m04, InvalidDescr): 3171 try: 3172 updated = _model_conv.convert_as_dict( 3173 m04 # pyright: ignore[reportArgumentType] 3174 ) 3175 except Exception as e: 3176 logger.error( 3177 "Failed to convert from invalid model 0.4 description." 3178 + f"\nerror: {e}" 3179 + "\nProceeding with model 0.5 validation without conversion." 3180 ) 3181 updated = None 3182 else: 3183 updated = _model_conv.convert_as_dict(m04) 3184 3185 if updated is not None: 3186 data.clear() 3187 data.update(updated) 3188 3189 elif fv_tuple[:2] == (0, 5): 3190 # bump patch version 3191 data["format_version"] = cls.implemented_format_version
Specification of the fields used in a bioimage.io-compliant RDF to describe AI models with pretrained weights. These fields are typically stored in a YAML file which we call a model resource description file (model RDF).
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
URL or relative path to a markdown file with additional documentation.
The recommended documentation file name is README.md
. An .md
suffix is mandatory.
The documentation should include a '#[#] Validation' (sub)section
with details on how to quantitatively validate the model on unseen data.
Describes the input tensors expected by this model.
A human-readable name of this model. It should be no longer than 64 characters and may only contain letter, number, underscore, minus, parentheses and spaces. We recommend to chose a name that refers to the model's task and image modality.
Describes the output tensors.
The persons that have packaged and uploaded this model.
Only required if those persons differ from the authors
.
The model from which this model is derived, e.g. by fine-tuning the weights.
Custom run mode for this model: for more complex prediction procedures like test time data augmentation that currently cannot be expressed in the specification. No standard run modes are defined yet.
The dataset used to train this model
The weights for this model. Weights can be given for different formats, but should otherwise be equivalent. The available weight formats determine which consumers can use this model.
2943 @staticmethod 2944 def get_batch_size(tensor_sizes: Mapping[TensorId, Mapping[AxisId, int]]) -> int: 2945 batch_size = 1 2946 tensor_with_batchsize: Optional[TensorId] = None 2947 for tid in tensor_sizes: 2948 for aid, s in tensor_sizes[tid].items(): 2949 if aid != BATCH_AXIS_ID or s == 1 or s == batch_size: 2950 continue 2951 2952 if batch_size != 1: 2953 assert tensor_with_batchsize is not None 2954 raise ValueError( 2955 f"batch size mismatch for tensors '{tensor_with_batchsize}' ({batch_size}) and '{tid}' ({s})" 2956 ) 2957 2958 batch_size = s 2959 tensor_with_batchsize = tid 2960 2961 return batch_size
2963 def get_output_tensor_sizes( 2964 self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]] 2965 ) -> Dict[TensorId, Dict[AxisId, Union[int, _DataDepSize]]]: 2966 """Returns the tensor output sizes for given **input_sizes**. 2967 Only if **input_sizes** has a valid input shape, the tensor output size is exact. 2968 Otherwise it might be larger than the actual (valid) output""" 2969 batch_size = self.get_batch_size(input_sizes) 2970 ns = self.get_ns(input_sizes) 2971 2972 tensor_sizes = self.get_tensor_sizes(ns, batch_size=batch_size) 2973 return tensor_sizes.outputs
Returns the tensor output sizes for given input_sizes. Only if input_sizes has a valid input shape, the tensor output size is exact. Otherwise it might be larger than the actual (valid) output
2975 def get_ns(self, input_sizes: Mapping[TensorId, Mapping[AxisId, int]]): 2976 """get parameter `n` for each parameterized axis 2977 such that the valid input size is >= the given input size""" 2978 ret: Dict[Tuple[TensorId, AxisId], ParameterizedSize_N] = {} 2979 axes = {t.id: {a.id: a for a in t.axes} for t in self.inputs} 2980 for tid in input_sizes: 2981 for aid, s in input_sizes[tid].items(): 2982 size_descr = axes[tid][aid].size 2983 if isinstance(size_descr, ParameterizedSize): 2984 ret[(tid, aid)] = size_descr.get_n(s) 2985 elif size_descr is None or isinstance(size_descr, (int, SizeReference)): 2986 pass 2987 else: 2988 assert_never(size_descr) 2989 2990 return ret
get parameter n
for each parameterized axis
such that the valid input size is >= the given input size
2992 def get_tensor_sizes( 2993 self, ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], batch_size: int 2994 ) -> _TensorSizes: 2995 axis_sizes = self.get_axis_sizes(ns, batch_size=batch_size) 2996 return _TensorSizes( 2997 { 2998 t: { 2999 aa: axis_sizes.inputs[(tt, aa)] 3000 for tt, aa in axis_sizes.inputs 3001 if tt == t 3002 } 3003 for t in {tt for tt, _ in axis_sizes.inputs} 3004 }, 3005 { 3006 t: { 3007 aa: axis_sizes.outputs[(tt, aa)] 3008 for tt, aa in axis_sizes.outputs 3009 if tt == t 3010 } 3011 for t in {tt for tt, _ in axis_sizes.outputs} 3012 }, 3013 )
3015 def get_axis_sizes( 3016 self, 3017 ns: Mapping[Tuple[TensorId, AxisId], ParameterizedSize_N], 3018 batch_size: Optional[int] = None, 3019 *, 3020 max_input_shape: Optional[Mapping[Tuple[TensorId, AxisId], int]] = None, 3021 ) -> _AxisSizes: 3022 """Determine input and output block shape for scale factors **ns** 3023 of parameterized input sizes. 3024 3025 Args: 3026 ns: Scale factor `n` for each axis (keyed by (tensor_id, axis_id)) 3027 that is parameterized as `size = min + n * step`. 3028 batch_size: The desired size of the batch dimension. 3029 If given **batch_size** overwrites any batch size present in 3030 **max_input_shape**. Default 1. 3031 max_input_shape: Limits the derived block shapes. 3032 Each axis for which the input size, parameterized by `n`, is larger 3033 than **max_input_shape** is set to the minimal value `n_min` for which 3034 this is still true. 3035 Use this for small input samples or large values of **ns**. 3036 Or simply whenever you know the full input shape. 3037 3038 Returns: 3039 Resolved axis sizes for model inputs and outputs. 3040 """ 3041 max_input_shape = max_input_shape or {} 3042 if batch_size is None: 3043 for (_t_id, a_id), s in max_input_shape.items(): 3044 if a_id == BATCH_AXIS_ID: 3045 batch_size = s 3046 break 3047 else: 3048 batch_size = 1 3049 3050 all_axes = { 3051 t.id: {a.id: a for a in t.axes} for t in chain(self.inputs, self.outputs) 3052 } 3053 3054 inputs: Dict[Tuple[TensorId, AxisId], int] = {} 3055 outputs: Dict[Tuple[TensorId, AxisId], Union[int, _DataDepSize]] = {} 3056 3057 def get_axis_size(a: Union[InputAxis, OutputAxis]): 3058 if isinstance(a, BatchAxis): 3059 if (t_descr.id, a.id) in ns: 3060 logger.warning( 3061 "Ignoring unexpected size increment factor (n) for batch axis" 3062 + " of tensor '{}'.", 3063 t_descr.id, 3064 ) 3065 return batch_size 3066 elif isinstance(a.size, int): 3067 if (t_descr.id, a.id) in ns: 3068 logger.warning( 3069 "Ignoring unexpected size increment factor (n) for fixed size" 3070 + " axis '{}' of tensor '{}'.", 3071 a.id, 3072 t_descr.id, 3073 ) 3074 return a.size 3075 elif isinstance(a.size, ParameterizedSize): 3076 if (t_descr.id, a.id) not in ns: 3077 raise ValueError( 3078 "Size increment factor (n) missing for parametrized axis" 3079 + f" '{a.id}' of tensor '{t_descr.id}'." 3080 ) 3081 n = ns[(t_descr.id, a.id)] 3082 s_max = max_input_shape.get((t_descr.id, a.id)) 3083 if s_max is not None: 3084 n = min(n, a.size.get_n(s_max)) 3085 3086 return a.size.get_size(n) 3087 3088 elif isinstance(a.size, SizeReference): 3089 if (t_descr.id, a.id) in ns: 3090 logger.warning( 3091 "Ignoring unexpected size increment factor (n) for axis '{}'" 3092 + " of tensor '{}' with size reference.", 3093 a.id, 3094 t_descr.id, 3095 ) 3096 assert not isinstance(a, BatchAxis) 3097 ref_axis = all_axes[a.size.tensor_id][a.size.axis_id] 3098 assert not isinstance(ref_axis, BatchAxis) 3099 ref_key = (a.size.tensor_id, a.size.axis_id) 3100 ref_size = inputs.get(ref_key, outputs.get(ref_key)) 3101 assert ref_size is not None, ref_key 3102 assert not isinstance(ref_size, _DataDepSize), ref_key 3103 return a.size.get_size( 3104 axis=a, 3105 ref_axis=ref_axis, 3106 ref_size=ref_size, 3107 ) 3108 elif isinstance(a.size, DataDependentSize): 3109 if (t_descr.id, a.id) in ns: 3110 logger.warning( 3111 "Ignoring unexpected increment factor (n) for data dependent" 3112 + " size axis '{}' of tensor '{}'.", 3113 a.id, 3114 t_descr.id, 3115 ) 3116 return _DataDepSize(a.size.min, a.size.max) 3117 else: 3118 assert_never(a.size) 3119 3120 # first resolve all , but the `SizeReference` input sizes 3121 for t_descr in self.inputs: 3122 for a in t_descr.axes: 3123 if not isinstance(a.size, SizeReference): 3124 s = get_axis_size(a) 3125 assert not isinstance(s, _DataDepSize) 3126 inputs[t_descr.id, a.id] = s 3127 3128 # resolve all other input axis sizes 3129 for t_descr in self.inputs: 3130 for a in t_descr.axes: 3131 if isinstance(a.size, SizeReference): 3132 s = get_axis_size(a) 3133 assert not isinstance(s, _DataDepSize) 3134 inputs[t_descr.id, a.id] = s 3135 3136 # resolve all output axis sizes 3137 for t_descr in self.outputs: 3138 for a in t_descr.axes: 3139 assert not isinstance(a.size, ParameterizedSize) 3140 s = get_axis_size(a) 3141 outputs[t_descr.id, a.id] = s 3142 3143 return _AxisSizes(inputs=inputs, outputs=outputs)
Determine input and output block shape for scale factors ns of parameterized input sizes.
Arguments:
- ns: Scale factor
n
for each axis (keyed by (tensor_id, axis_id)) that is parameterized assize = min + n * step
. - batch_size: The desired size of the batch dimension. If given batch_size overwrites any batch size present in max_input_shape. Default 1.
- max_input_shape: Limits the derived block shapes.
Each axis for which the input size, parameterized by
n
, is larger than max_input_shape is set to the minimal valuen_min
for which this is still true. Use this for small input samples or large values of ns. Or simply whenever you know the full input shape.
Returns:
Resolved axis sizes for model inputs and outputs.
3151 @classmethod 3152 def convert_from_old_format_wo_validation(cls, data: Dict[str, Any]) -> None: 3153 """Convert metadata following an older format version to this classes' format 3154 without validating the result. 3155 """ 3156 if ( 3157 data.get("type") == "model" 3158 and isinstance(fv := data.get("format_version"), str) 3159 and fv.count(".") == 2 3160 ): 3161 fv_parts = fv.split(".") 3162 if any(not p.isdigit() for p in fv_parts): 3163 return 3164 3165 fv_tuple = tuple(map(int, fv_parts)) 3166 3167 assert cls.implemented_format_version_tuple[0:2] == (0, 5) 3168 if fv_tuple[:2] in ((0, 3), (0, 4)): 3169 m04 = _ModelDescr_v0_4.load(data) 3170 if isinstance(m04, InvalidDescr): 3171 try: 3172 updated = _model_conv.convert_as_dict( 3173 m04 # pyright: ignore[reportArgumentType] 3174 ) 3175 except Exception as e: 3176 logger.error( 3177 "Failed to convert from invalid model 0.4 description." 3178 + f"\nerror: {e}" 3179 + "\nProceeding with model 0.5 validation without conversion." 3180 ) 3181 updated = None 3182 else: 3183 updated = _model_conv.convert_as_dict(m04) 3184 3185 if updated is not None: 3186 data.clear() 3187 data.update(updated) 3188 3189 elif fv_tuple[:2] == (0, 5): 3190 # bump patch version 3191 data["format_version"] = cls.implemented_format_version
Convert metadata following an older format version to this classes' format without validating the result.
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
Inherited Members
31class NotebookDescr(GenericDescrBase): 32 """Bioimage.io description of a Jupyter notebook.""" 33 34 implemented_type: ClassVar[Literal["notebook"]] = "notebook" 35 if TYPE_CHECKING: 36 type: Literal["notebook"] = "notebook" 37 else: 38 type: Literal["notebook"] 39 40 id: Optional[NotebookId] = None 41 """bioimage.io-wide unique resource identifier 42 assigned by bioimage.io; version **un**specific.""" 43 44 parent: Optional[NotebookId] = None 45 """The description from which this one is derived""" 46 47 source: NotebookSource 48 """The Jupyter notebook"""
Bioimage.io description of a Jupyter notebook.
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
The description from which this one is derived
The Jupyter notebook
Configuration for the model, should be a dictionary conforming to [ConfigDict
][pydantic.config.ConfigDict].
337def init_private_attributes(self: BaseModel, context: Any, /) -> None: 338 """This function is meant to behave like a BaseModel method to initialise private attributes. 339 340 It takes context as an argument since that's what pydantic-core passes when calling it. 341 342 Args: 343 self: The BaseModel instance. 344 context: The context. 345 """ 346 if getattr(self, '__pydantic_private__', None) is None: 347 pydantic_private = {} 348 for name, private_attr in self.__private_attributes__.items(): 349 default = private_attr.get_default() 350 if default is not PydanticUndefined: 351 pydantic_private[name] = default 352 object_setattr(self, '__pydantic_private__', pydantic_private)
This function is meant to behave like a BaseModel method to initialise private attributes.
It takes context as an argument since that's what pydantic-core passes when calling it.
Arguments:
- self: The BaseModel instance.
- context: The context.
Inherited Members
- bioimageio.spec.generic.v0_3.GenericDescrBase
- implemented_format_version
- convert_from_old_format_wo_validation
- documentation
- badges
- config
- bioimageio.spec.generic.v0_3.GenericModelDescrBase
- name
- description
- covers
- id_emoji
- attachments
- cite
- license
- git_repo
- icon
- links
- uploader
- maintainers
- check_maintainers_exist
- warn_about_tag_categories
- version
150def save_bioimageio_package_as_folder( 151 source: Union[BioimageioYamlSource, ResourceDescr], 152 /, 153 *, 154 output_path: Union[NewPath, DirectoryPath, None] = None, 155 weights_priority_order: Optional[ # model only 156 Sequence[ 157 Literal[ 158 "keras_hdf5", 159 "onnx", 160 "pytorch_state_dict", 161 "tensorflow_js", 162 "tensorflow_saved_model_bundle", 163 "torchscript", 164 ] 165 ] 166 ] = None, 167) -> DirectoryPath: 168 """Write the content of a bioimage.io resource package to a folder. 169 170 Args: 171 source: bioimageio resource description 172 output_path: file path to write package to 173 weights_priority_order: If given only the first weights format present in the model is included. 174 If none of the prioritized weights formats is found all are included. 175 176 Returns: 177 directory path to bioimageio package folder 178 """ 179 package_content = _prepare_resource_package( 180 source, 181 weights_priority_order=weights_priority_order, 182 ) 183 if output_path is None: 184 output_path = Path(mkdtemp()) 185 else: 186 output_path = Path(output_path) 187 188 output_path.mkdir(exist_ok=True, parents=True) 189 for name, src in package_content.items(): 190 if isinstance(src, collections.abc.Mapping): 191 write_yaml(src, output_path / name) 192 else: 193 with (output_path / name).open("wb") as dest: 194 _ = shutil.copyfileobj(src, dest) 195 196 return output_path
Write the content of a bioimage.io resource package to a folder.
Arguments:
- source: bioimageio resource description
- output_path: file path to write package to
- weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.
Returns:
directory path to bioimageio package folder
263def save_bioimageio_package_to_stream( 264 source: Union[BioimageioYamlSource, ResourceDescr], 265 /, 266 *, 267 compression: int = ZIP_DEFLATED, 268 compression_level: int = 1, 269 output_stream: Union[IO[bytes], None] = None, 270 weights_priority_order: Optional[ # model only 271 Sequence[ 272 Literal[ 273 "keras_hdf5", 274 "onnx", 275 "pytorch_state_dict", 276 "tensorflow_js", 277 "tensorflow_saved_model_bundle", 278 "torchscript", 279 ] 280 ] 281 ] = None, 282) -> IO[bytes]: 283 """Package a bioimageio resource into a stream. 284 285 Args: 286 rd: bioimageio resource description 287 compression: The numeric constant of compression method. 288 compression_level: Compression level to use when writing files to the archive. 289 See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile 290 output_stream: stream to write package to 291 weights_priority_order: If given only the first weights format present in the model is included. 292 If none of the prioritized weights formats is found all are included. 293 294 Note: this function bypasses safety checks and does not load/validate the model after writing. 295 296 Returns: 297 stream of zipped bioimageio package 298 """ 299 if output_stream is None: 300 output_stream = BytesIO() 301 302 package_content = _prepare_resource_package( 303 source, 304 weights_priority_order=weights_priority_order, 305 ) 306 307 write_zip( 308 output_stream, 309 package_content, 310 compression=compression, 311 compression_level=compression_level, 312 ) 313 314 return output_stream
Package a bioimageio resource into a stream.
Arguments:
- rd: bioimageio resource description
- compression: The numeric constant of compression method.
- compression_level: Compression level to use when writing files to the archive. See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
- output_stream: stream to write package to
- weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.
Note: this function bypasses safety checks and does not load/validate the model after writing.
Returns:
stream of zipped bioimageio package
199def save_bioimageio_package( 200 source: Union[BioimageioYamlSource, ResourceDescr], 201 /, 202 *, 203 compression: int = ZIP_DEFLATED, 204 compression_level: int = 1, 205 output_path: Union[NewPath, FilePath, None] = None, 206 weights_priority_order: Optional[ # model only 207 Sequence[ 208 Literal[ 209 "keras_hdf5", 210 "onnx", 211 "pytorch_state_dict", 212 "tensorflow_js", 213 "tensorflow_saved_model_bundle", 214 "torchscript", 215 ] 216 ] 217 ] = None, 218 allow_invalid: bool = False, 219) -> FilePath: 220 """Package a bioimageio resource as a zip file. 221 222 Args: 223 rd: bioimageio resource description 224 compression: The numeric constant of compression method. 225 compression_level: Compression level to use when writing files to the archive. 226 See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile 227 output_path: file path to write package to 228 weights_priority_order: If given only the first weights format present in the model is included. 229 If none of the prioritized weights formats is found all are included. 230 231 Returns: 232 path to zipped bioimageio package 233 """ 234 package_content = _prepare_resource_package( 235 source, 236 weights_priority_order=weights_priority_order, 237 ) 238 if output_path is None: 239 output_path = Path( 240 NamedTemporaryFile(suffix=".bioimageio.zip", delete=False).name 241 ) 242 else: 243 output_path = Path(output_path) 244 245 write_zip( 246 output_path, 247 package_content, 248 compression=compression, 249 compression_level=compression_level, 250 ) 251 with get_validation_context().replace(warning_level=ERROR): 252 if isinstance((exported := load_description(output_path)), InvalidDescr): 253 exported.validation_summary.display() 254 msg = f"Exported package at '{output_path}' is invalid." 255 if allow_invalid: 256 logger.error(msg) 257 else: 258 raise ValueError(msg) 259 260 return output_path
Package a bioimageio resource as a zip file.
Arguments:
- rd: bioimageio resource description
- compression: The numeric constant of compression method.
- compression_level: Compression level to use when writing files to the archive. See https://docs.python.org/3/library/zipfile.html#zipfile.ZipFile
- output_path: file path to write package to
- weights_priority_order: If given only the first weights format present in the model is included. If none of the prioritized weights formats is found all are included.
Returns:
path to zipped bioimageio package
202def save_bioimageio_yaml_only( 203 rd: Union[ResourceDescr, BioimageioYamlContent, InvalidDescr], 204 /, 205 file: Union[NewPath, FilePath, TextIO], 206 *, 207 exclude_unset: bool = True, 208 exclude_defaults: bool = False, 209): 210 """write the metadata of a resource description (`rd`) to `file` 211 without writing any of the referenced files in it. 212 213 Args: 214 rd: bioimageio resource description 215 file: file or stream to save to 216 exclude_unset: Exclude fields that have not explicitly be set. 217 exclude_defaults: Exclude fields that have the default value (even if set explicitly). 218 219 Note: To save a resource description with its associated files as a package, 220 use `save_bioimageio_package` or `save_bioimageio_package_as_folder`. 221 """ 222 if isinstance(rd, ResourceDescrBase): 223 content = dump_description( 224 rd, exclude_unset=exclude_unset, exclude_defaults=exclude_defaults 225 ) 226 else: 227 content = rd 228 229 write_yaml(cast(YamlValue, content), file)
write the metadata of a resource description (rd
) to file
without writing any of the referenced files in it.
Arguments:
- rd: bioimageio resource description
- file: file or stream to save to
- exclude_unset: Exclude fields that have not explicitly be set.
- exclude_defaults: Exclude fields that have the default value (even if set explicitly).
Note: To save a resource description with its associated files as a package,
use save_bioimageio_package
or save_bioimageio_package_as_folder
.
258def update_format( 259 source: Union[ 260 ResourceDescr, 261 PermissiveFileSource, 262 ZipFile, 263 BioimageioYamlContent, 264 InvalidDescr, 265 ], 266 /, 267 *, 268 output: Union[Path, TextIO, None] = None, 269 exclude_defaults: bool = True, 270 perform_io_checks: Optional[bool] = None, 271) -> Union[LatestResourceDescr, InvalidDescr]: 272 """Update a resource description. 273 274 Notes: 275 - Invalid **source** descriptions may fail to update. 276 - The updated description might be invalid (even if the **source** was valid). 277 """ 278 279 if isinstance(source, ResourceDescrBase): 280 root = source.root 281 source = dump_description(source) 282 else: 283 root = None 284 285 if isinstance(source, collections.abc.Mapping): 286 descr = build_description( 287 source, 288 context=get_validation_context().replace( 289 root=root, perform_io_checks=perform_io_checks 290 ), 291 format_version=LATEST, 292 ) 293 294 else: 295 descr = load_description( 296 source, 297 perform_io_checks=perform_io_checks, 298 format_version=LATEST, 299 ) 300 301 if output is not None: 302 save_bioimageio_yaml_only(descr, file=output, exclude_defaults=exclude_defaults) 303 304 return descr
Update a resource description.
Notes:
- Invalid source descriptions may fail to update.
- The updated description might be invalid (even if the source was valid).
307def update_hashes( 308 source: Union[PermissiveFileSource, ZipFile, ResourceDescr, BioimageioYamlContent], 309 /, 310) -> Union[ResourceDescr, InvalidDescr]: 311 """Update hash values of the files referenced in **source**.""" 312 if isinstance(source, ResourceDescrBase): 313 root = source.root 314 source = dump_description(source) 315 else: 316 root = None 317 318 context = get_validation_context().replace( 319 update_hashes=True, root=root, perform_io_checks=True 320 ) 321 with context: 322 if isinstance(source, collections.abc.Mapping): 323 return build_description(source) 324 else: 325 return load_description(source, perform_io_checks=True)
Update hash values of the files referenced in source.
204def validate_format( 205 data: BioimageioYamlContent, 206 /, 207 *, 208 format_version: Union[Literal["discover", "latest"], str] = DISCOVER, 209 context: Optional[ValidationContext] = None, 210) -> ValidationSummary: 211 """Validate a dictionary holding a bioimageio description. 212 See `bioimagieo.spec.load_description_and_validate_format_only` 213 to validate a file source. 214 215 Args: 216 data: Dictionary holding the raw bioimageio.yaml content. 217 format_version: Format version to (update to and) use for validation. 218 context: Validation context, see `bioimagieo.spec.ValidationContext` 219 220 Note: 221 Use `bioimagieo.spec.load_description_and_validate_format_only` to validate a 222 file source instead of loading the YAML content and creating the appropriate 223 `ValidationContext`. 224 225 Alternatively you can use `bioimagieo.spec.load_description` and access the 226 `validation_summary` attribute of the returned object. 227 """ 228 with context or get_validation_context(): 229 rd = build_description(data, format_version=format_version) 230 231 assert rd.validation_summary is not None 232 return rd.validation_summary
Validate a dictionary holding a bioimageio description.
See bioimagieo.spec.load_description_and_validate_format_only
to validate a file source.
Arguments:
- data: Dictionary holding the raw bioimageio.yaml content.
- format_version: Format version to (update to and) use for validation.
- context: Validation context, see
bioimagieo.spec.ValidationContext
Note:
Use
bioimagieo.spec.load_description_and_validate_format_only
to validate a file source instead of loading the YAML content and creating the appropriateValidationContext
.Alternatively you can use
bioimagieo.spec.load_description
and access thevalidation_summary
attribute of the returned object.
57@dataclass(frozen=True) 58class ValidationContext(ValidationContextBase): 59 """A validation context used to control validation of bioimageio resources. 60 61 For example a relative file path in a bioimageio description requires the **root** 62 context to evaluate if the file is available and, if **perform_io_checks** is true, 63 if it matches its expected SHA256 hash value. 64 """ 65 66 _context_tokens: "List[Token[Optional[ValidationContext]]]" = field( 67 init=False, 68 default_factory=cast( 69 "Callable[[], List[Token[Optional[ValidationContext]]]]", list 70 ), 71 ) 72 73 cache: Union[ 74 DiskCache[RootHttpUrl], MemoryCache[RootHttpUrl], NoopCache[RootHttpUrl] 75 ] = field(default=settings.disk_cache) 76 disable_cache: bool = False 77 """Disable caching downloads to `settings.cache_path` 78 and (re)download them to memory instead.""" 79 80 root: Union[RootHttpUrl, DirectoryPath, ZipFile] = Path() 81 """Url/directory/archive serving as base to resolve any relative file paths.""" 82 83 warning_level: WarningLevel = 50 84 """Treat warnings of severity `s` as validation errors if `s >= warning_level`.""" 85 86 log_warnings: bool = settings.log_warnings 87 """If `True` warnings are logged to the terminal 88 89 Note: This setting does not affect warning entries 90 of a generated `bioimageio.spec.ValidationSummary`. 91 """ 92 93 progressbar_factory: Optional[Callable[[], Progressbar]] = None 94 """Callable to return a tqdm-like progressbar. 95 96 Currently this is only used for file downloads.""" 97 98 raise_errors: bool = False 99 """Directly raise any validation errors 100 instead of aggregating errors and returning a `bioimageio.spec.InvalidDescr`. (for debugging)""" 101 102 @property 103 def summary(self): 104 if isinstance(self.root, ZipFile): 105 if self.root.filename is None: 106 root = "in-memory" 107 else: 108 root = Path(self.root.filename) 109 else: 110 root = self.root 111 112 return ValidationContextSummary( 113 root=root, 114 file_name=self.file_name, 115 perform_io_checks=self.perform_io_checks, 116 known_files=copy(self.known_files), 117 update_hashes=self.update_hashes, 118 ) 119 120 def __enter__(self): 121 self._context_tokens.append(_validation_context_var.set(self)) 122 return self 123 124 def __exit__(self, type, value, traceback): # type: ignore 125 _validation_context_var.reset(self._context_tokens.pop(-1)) 126 127 def replace( # TODO: probably use __replace__ when py>=3.13 128 self, 129 root: Optional[Union[RootHttpUrl, DirectoryPath, ZipFile]] = None, 130 warning_level: Optional[WarningLevel] = None, 131 log_warnings: Optional[bool] = None, 132 file_name: Optional[str] = None, 133 perform_io_checks: Optional[bool] = None, 134 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 135 raise_errors: Optional[bool] = None, 136 update_hashes: Optional[bool] = None, 137 ) -> Self: 138 if known_files is None and root is not None and self.root != root: 139 # reset known files if root changes, but no new known_files are given 140 known_files = {} 141 142 return self.__class__( 143 root=self.root if root is None else root, 144 warning_level=( 145 self.warning_level if warning_level is None else warning_level 146 ), 147 log_warnings=self.log_warnings if log_warnings is None else log_warnings, 148 file_name=self.file_name if file_name is None else file_name, 149 perform_io_checks=( 150 self.perform_io_checks 151 if perform_io_checks is None 152 else perform_io_checks 153 ), 154 known_files=self.known_files if known_files is None else known_files, 155 raise_errors=self.raise_errors if raise_errors is None else raise_errors, 156 update_hashes=( 157 self.update_hashes if update_hashes is None else update_hashes 158 ), 159 ) 160 161 @property 162 def source_name(self) -> str: 163 if self.file_name is None: 164 return "in-memory" 165 else: 166 try: 167 if isinstance(self.root, Path): 168 source = (self.root / self.file_name).absolute() 169 else: 170 parsed = urlsplit(str(self.root)) 171 path = list(parsed.path.strip("/").split("/")) + [self.file_name] 172 source = urlunsplit( 173 ( 174 parsed.scheme, 175 parsed.netloc, 176 "/".join(path), 177 parsed.query, 178 parsed.fragment, 179 ) 180 ) 181 except ValueError: 182 return self.file_name 183 else: 184 return str(source)
A validation context used to control validation of bioimageio resources.
For example a relative file path in a bioimageio description requires the root context to evaluate if the file is available and, if perform_io_checks is true, if it matches its expected SHA256 hash value.
Disable caching downloads to settings.cache_path
and (re)download them to memory instead.
Url/directory/archive serving as base to resolve any relative file paths.
Treat warnings of severity s
as validation errors if s >= warning_level
.
If True
warnings are logged to the terminal
Note: This setting does not affect warning entries
of a generated bioimageio.spec.ValidationSummary
.
Directly raise any validation errors
instead of aggregating errors and returning a bioimageio.spec.InvalidDescr
. (for debugging)
102 @property 103 def summary(self): 104 if isinstance(self.root, ZipFile): 105 if self.root.filename is None: 106 root = "in-memory" 107 else: 108 root = Path(self.root.filename) 109 else: 110 root = self.root 111 112 return ValidationContextSummary( 113 root=root, 114 file_name=self.file_name, 115 perform_io_checks=self.perform_io_checks, 116 known_files=copy(self.known_files), 117 update_hashes=self.update_hashes, 118 )
127 def replace( # TODO: probably use __replace__ when py>=3.13 128 self, 129 root: Optional[Union[RootHttpUrl, DirectoryPath, ZipFile]] = None, 130 warning_level: Optional[WarningLevel] = None, 131 log_warnings: Optional[bool] = None, 132 file_name: Optional[str] = None, 133 perform_io_checks: Optional[bool] = None, 134 known_files: Optional[Dict[str, Optional[Sha256]]] = None, 135 raise_errors: Optional[bool] = None, 136 update_hashes: Optional[bool] = None, 137 ) -> Self: 138 if known_files is None and root is not None and self.root != root: 139 # reset known files if root changes, but no new known_files are given 140 known_files = {} 141 142 return self.__class__( 143 root=self.root if root is None else root, 144 warning_level=( 145 self.warning_level if warning_level is None else warning_level 146 ), 147 log_warnings=self.log_warnings if log_warnings is None else log_warnings, 148 file_name=self.file_name if file_name is None else file_name, 149 perform_io_checks=( 150 self.perform_io_checks 151 if perform_io_checks is None 152 else perform_io_checks 153 ), 154 known_files=self.known_files if known_files is None else known_files, 155 raise_errors=self.raise_errors if raise_errors is None else raise_errors, 156 update_hashes=( 157 self.update_hashes if update_hashes is None else update_hashes 158 ), 159 )
161 @property 162 def source_name(self) -> str: 163 if self.file_name is None: 164 return "in-memory" 165 else: 166 try: 167 if isinstance(self.root, Path): 168 source = (self.root / self.file_name).absolute() 169 else: 170 parsed = urlsplit(str(self.root)) 171 path = list(parsed.path.strip("/").split("/")) + [self.file_name] 172 source = urlunsplit( 173 ( 174 parsed.scheme, 175 parsed.netloc, 176 "/".join(path), 177 parsed.query, 178 parsed.fragment, 179 ) 180 ) 181 except ValueError: 182 return self.file_name 183 else: 184 return str(source)
240class ValidationSummary(BaseModel, extra="allow"): 241 """Summarizes output of all bioimageio validations and tests 242 for one specific `ResourceDescr` instance.""" 243 244 name: str 245 """name of the validation""" 246 source_name: str 247 """source of the validated bioimageio description""" 248 id: Optional[str] = None 249 """ID of the resource being validated""" 250 type: str 251 """type of the resource being validated""" 252 format_version: str 253 """format version of the resource being validated""" 254 status: Literal["passed", "valid-format", "failed"] 255 """overall status of the bioimageio validation""" 256 details: List[ValidationDetail] 257 """list of validation details""" 258 env: Set[InstalledPackage] = Field( 259 default_factory=lambda: { 260 InstalledPackage(name="bioimageio.spec", version=VERSION) 261 } 262 ) 263 """list of selected, relevant package versions""" 264 265 saved_conda_list: Optional[str] = None 266 267 @field_serializer("saved_conda_list") 268 def _save_conda_list(self, value: Optional[str]): 269 return self.conda_list 270 271 @property 272 def conda_list(self): 273 if self.saved_conda_list is None: 274 p = subprocess.run( 275 ["conda", "list"], 276 stdout=subprocess.PIPE, 277 stderr=subprocess.STDOUT, 278 shell=True, 279 text=True, 280 ) 281 self.saved_conda_list = ( 282 p.stdout or f"`conda list` exited with {p.returncode}" 283 ) 284 285 return self.saved_conda_list 286 287 @property 288 def status_icon(self): 289 if self.status == "passed": 290 return "✔️" 291 elif self.status == "valid-format": 292 return "🟡" 293 else: 294 return "❌" 295 296 @property 297 def errors(self) -> List[ErrorEntry]: 298 return list(chain.from_iterable(d.errors for d in self.details)) 299 300 @property 301 def warnings(self) -> List[WarningEntry]: 302 return list(chain.from_iterable(d.warnings for d in self.details)) 303 304 def format( 305 self, 306 *, 307 width: Optional[int] = None, 308 include_conda_list: bool = False, 309 ): 310 """Format summary as Markdown string""" 311 return self._format( 312 width=width, target="md", include_conda_list=include_conda_list 313 ) 314 315 format_md = format 316 317 def format_html( 318 self, 319 *, 320 width: Optional[int] = None, 321 include_conda_list: bool = False, 322 ): 323 md_with_html = self._format( 324 target="html", width=width, include_conda_list=include_conda_list 325 ) 326 return markdown.markdown( 327 md_with_html, extensions=["tables", "fenced_code", "nl2br"] 328 ) 329 330 # TODO: fix bug which casuses extensive white space between the info table and details table 331 # (the generated markdown seems fine) 332 @no_type_check 333 def display( 334 self, 335 *, 336 width: Optional[int] = None, 337 include_conda_list: bool = False, 338 tab_size: int = 4, 339 soft_wrap: bool = True, 340 ) -> None: 341 try: # render as HTML in Jupyter notebook 342 from IPython.core.getipython import get_ipython 343 from IPython.display import display_html 344 except ImportError: 345 pass 346 else: 347 if get_ipython() is not None: 348 _ = display_html( 349 self.format_html( 350 width=width, include_conda_list=include_conda_list 351 ), 352 raw=True, 353 ) 354 return 355 356 # render with rich 357 self._format( 358 target=rich.console.Console( 359 width=width, 360 tab_size=tab_size, 361 soft_wrap=soft_wrap, 362 ), 363 width=width, 364 include_conda_list=include_conda_list, 365 ) 366 367 def add_detail(self, detail: ValidationDetail): 368 if detail.status == "failed": 369 self.status = "failed" 370 elif detail.status != "passed": 371 assert_never(detail.status) 372 373 self.details.append(detail) 374 375 def log( 376 self, 377 to: Union[Literal["display"], Path, Sequence[Union[Literal["display"], Path]]], 378 ) -> List[Path]: 379 """Convenience method to display the validation summary in the terminal and/or 380 save it to disk. See `save` for details.""" 381 if to == "display": 382 display = True 383 save_to = [] 384 elif isinstance(to, Path): 385 display = False 386 save_to = [to] 387 else: 388 display = "display" in to 389 save_to = [p for p in to if p != "display"] 390 391 if display: 392 self.display() 393 394 return self.save(save_to) 395 396 def save( 397 self, path: Union[Path, Sequence[Path]] = Path("{id}_summary_{now}") 398 ) -> List[Path]: 399 """Save the validation/test summary in JSON, Markdown or HTML format. 400 401 Returns: 402 List of file paths the summary was saved to. 403 404 Notes: 405 - Format is chosen based on the suffix: `.json`, `.md`, `.html`. 406 - If **path** has no suffix it is assumed to be a direcotry to which a 407 `summary.json`, `summary.md` and `summary.html` are saved to. 408 """ 409 if isinstance(path, (str, Path)): 410 path = [Path(path)] 411 412 # folder to file paths 413 file_paths: List[Path] = [] 414 for p in path: 415 if p.suffix: 416 file_paths.append(p) 417 else: 418 file_paths.extend( 419 [ 420 p / "summary.json", 421 p / "summary.md", 422 p / "summary.html", 423 ] 424 ) 425 426 now = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ") 427 for p in file_paths: 428 p = Path(str(p).format(id=self.id or "bioimageio", now=now)) 429 if p.suffix == ".json": 430 self.save_json(p) 431 elif p.suffix == ".md": 432 self.save_markdown(p) 433 elif p.suffix == ".html": 434 self.save_html(p) 435 else: 436 raise ValueError(f"Unknown summary path suffix '{p.suffix}'") 437 438 return file_paths 439 440 def save_json( 441 self, path: Path = Path("summary.json"), *, indent: Optional[int] = 2 442 ): 443 """Save validation/test summary as JSON file.""" 444 json_str = self.model_dump_json(indent=indent) 445 path.parent.mkdir(exist_ok=True, parents=True) 446 _ = path.write_text(json_str, encoding="utf-8") 447 logger.info("Saved summary to {}", path.absolute()) 448 449 def save_markdown(self, path: Path = Path("summary.md")): 450 """Save rendered validation/test summary as Markdown file.""" 451 formatted = self.format_md() 452 path.parent.mkdir(exist_ok=True, parents=True) 453 _ = path.write_text(formatted, encoding="utf-8") 454 logger.info("Saved Markdown formatted summary to {}", path.absolute()) 455 456 def save_html(self, path: Path = Path("summary.html")) -> None: 457 """Save rendered validation/test summary as HTML file.""" 458 path.parent.mkdir(exist_ok=True, parents=True) 459 460 html = self.format_html() 461 _ = path.write_text(html, encoding="utf-8") 462 logger.info("Saved HTML formatted summary to {}", path.absolute()) 463 464 @classmethod 465 def load_json(cls, path: Path) -> Self: 466 """Load validation/test summary from a suitable JSON file""" 467 json_str = Path(path).read_text(encoding="utf-8") 468 return cls.model_validate_json(json_str) 469 470 @field_validator("env", mode="before") 471 def _convert_dict(cls, value: List[Union[List[str], Dict[str, str]]]): 472 """convert old env value for backwards compatibility""" 473 if isinstance(value, list): 474 return [ 475 ( 476 (v["name"], v["version"], v.get("build", ""), v.get("channel", "")) 477 if isinstance(v, dict) and "name" in v and "version" in v 478 else v 479 ) 480 for v in value 481 ] 482 else: 483 return value 484 485 def _format( 486 self, 487 *, 488 target: Union[rich.console.Console, Literal["html", "md"]], 489 width: Optional[int], 490 include_conda_list: bool, 491 ): 492 return _format_summary( 493 self, 494 target=target, 495 width=width or 100, 496 include_conda_list=include_conda_list, 497 )
Summarizes output of all bioimageio validations and tests
for one specific ResourceDescr
instance.
271 @property 272 def conda_list(self): 273 if self.saved_conda_list is None: 274 p = subprocess.run( 275 ["conda", "list"], 276 stdout=subprocess.PIPE, 277 stderr=subprocess.STDOUT, 278 shell=True, 279 text=True, 280 ) 281 self.saved_conda_list = ( 282 p.stdout or f"`conda list` exited with {p.returncode}" 283 ) 284 285 return self.saved_conda_list
304 def format( 305 self, 306 *, 307 width: Optional[int] = None, 308 include_conda_list: bool = False, 309 ): 310 """Format summary as Markdown string""" 311 return self._format( 312 width=width, target="md", include_conda_list=include_conda_list 313 )
Format summary as Markdown string
304 def format( 305 self, 306 *, 307 width: Optional[int] = None, 308 include_conda_list: bool = False, 309 ): 310 """Format summary as Markdown string""" 311 return self._format( 312 width=width, target="md", include_conda_list=include_conda_list 313 )
Format summary as Markdown string
317 def format_html( 318 self, 319 *, 320 width: Optional[int] = None, 321 include_conda_list: bool = False, 322 ): 323 md_with_html = self._format( 324 target="html", width=width, include_conda_list=include_conda_list 325 ) 326 return markdown.markdown( 327 md_with_html, extensions=["tables", "fenced_code", "nl2br"] 328 )
332 @no_type_check 333 def display( 334 self, 335 *, 336 width: Optional[int] = None, 337 include_conda_list: bool = False, 338 tab_size: int = 4, 339 soft_wrap: bool = True, 340 ) -> None: 341 try: # render as HTML in Jupyter notebook 342 from IPython.core.getipython import get_ipython 343 from IPython.display import display_html 344 except ImportError: 345 pass 346 else: 347 if get_ipython() is not None: 348 _ = display_html( 349 self.format_html( 350 width=width, include_conda_list=include_conda_list 351 ), 352 raw=True, 353 ) 354 return 355 356 # render with rich 357 self._format( 358 target=rich.console.Console( 359 width=width, 360 tab_size=tab_size, 361 soft_wrap=soft_wrap, 362 ), 363 width=width, 364 include_conda_list=include_conda_list, 365 )
375 def log( 376 self, 377 to: Union[Literal["display"], Path, Sequence[Union[Literal["display"], Path]]], 378 ) -> List[Path]: 379 """Convenience method to display the validation summary in the terminal and/or 380 save it to disk. See `save` for details.""" 381 if to == "display": 382 display = True 383 save_to = [] 384 elif isinstance(to, Path): 385 display = False 386 save_to = [to] 387 else: 388 display = "display" in to 389 save_to = [p for p in to if p != "display"] 390 391 if display: 392 self.display() 393 394 return self.save(save_to)
Convenience method to display the validation summary in the terminal and/or
save it to disk. See save
for details.
396 def save( 397 self, path: Union[Path, Sequence[Path]] = Path("{id}_summary_{now}") 398 ) -> List[Path]: 399 """Save the validation/test summary in JSON, Markdown or HTML format. 400 401 Returns: 402 List of file paths the summary was saved to. 403 404 Notes: 405 - Format is chosen based on the suffix: `.json`, `.md`, `.html`. 406 - If **path** has no suffix it is assumed to be a direcotry to which a 407 `summary.json`, `summary.md` and `summary.html` are saved to. 408 """ 409 if isinstance(path, (str, Path)): 410 path = [Path(path)] 411 412 # folder to file paths 413 file_paths: List[Path] = [] 414 for p in path: 415 if p.suffix: 416 file_paths.append(p) 417 else: 418 file_paths.extend( 419 [ 420 p / "summary.json", 421 p / "summary.md", 422 p / "summary.html", 423 ] 424 ) 425 426 now = datetime.now(timezone.utc).strftime("%Y%m%dT%H%M%SZ") 427 for p in file_paths: 428 p = Path(str(p).format(id=self.id or "bioimageio", now=now)) 429 if p.suffix == ".json": 430 self.save_json(p) 431 elif p.suffix == ".md": 432 self.save_markdown(p) 433 elif p.suffix == ".html": 434 self.save_html(p) 435 else: 436 raise ValueError(f"Unknown summary path suffix '{p.suffix}'") 437 438 return file_paths
Save the validation/test summary in JSON, Markdown or HTML format.
Returns:
List of file paths the summary was saved to.
Notes:
- Format is chosen based on the suffix:
.json
,.md
,.html
. - If path has no suffix it is assumed to be a direcotry to which a
summary.json
,summary.md
andsummary.html
are saved to.
440 def save_json( 441 self, path: Path = Path("summary.json"), *, indent: Optional[int] = 2 442 ): 443 """Save validation/test summary as JSON file.""" 444 json_str = self.model_dump_json(indent=indent) 445 path.parent.mkdir(exist_ok=True, parents=True) 446 _ = path.write_text(json_str, encoding="utf-8") 447 logger.info("Saved summary to {}", path.absolute())
Save validation/test summary as JSON file.
449 def save_markdown(self, path: Path = Path("summary.md")): 450 """Save rendered validation/test summary as Markdown file.""" 451 formatted = self.format_md() 452 path.parent.mkdir(exist_ok=True, parents=True) 453 _ = path.write_text(formatted, encoding="utf-8") 454 logger.info("Saved Markdown formatted summary to {}", path.absolute())
Save rendered validation/test summary as Markdown file.
456 def save_html(self, path: Path = Path("summary.html")) -> None: 457 """Save rendered validation/test summary as HTML file.""" 458 path.parent.mkdir(exist_ok=True, parents=True) 459 460 html = self.format_html() 461 _ = path.write_text(html, encoding="utf-8") 462 logger.info("Saved HTML formatted summary to {}", path.absolute())
Save rendered validation/test summary as HTML file.
464 @classmethod 465 def load_json(cls, path: Path) -> Self: 466 """Load validation/test summary from a suitable JSON file""" 467 json_str = Path(path).read_text(encoding="utf-8") 468 return cls.model_validate_json(json_str)
Load validation/test summary from a suitable JSON file