Coverage for src/bioimageio/core/digest_spec.py: 79%

215 statements  

« prev     ^ index     » next       coverage.py v7.10.7, created at 2025-09-22 09:21 +0000

1from __future__ import annotations 

2 

3import collections.abc 

4import importlib.util 

5import sys 

6from itertools import chain 

7from pathlib import Path 

8from tempfile import TemporaryDirectory 

9from typing import ( 

10 Any, 

11 Callable, 

12 Dict, 

13 Iterable, 

14 List, 

15 Mapping, 

16 NamedTuple, 

17 Optional, 

18 Sequence, 

19 Tuple, 

20 Union, 

21) 

22from zipfile import ZipFile, is_zipfile 

23 

24import numpy as np 

25import xarray as xr 

26from loguru import logger 

27from numpy.typing import NDArray 

28from typing_extensions import Unpack, assert_never 

29 

30from bioimageio.spec._internal.io import HashKwargs 

31from bioimageio.spec.common import FileDescr, FileSource, ZipPath 

32from bioimageio.spec.model import AnyModelDescr, v0_4, v0_5 

33from bioimageio.spec.model.v0_4 import CallableFromDepencency, CallableFromFile 

34from bioimageio.spec.model.v0_5 import ( 

35 ArchitectureFromFileDescr, 

36 ArchitectureFromLibraryDescr, 

37 ParameterizedSize_N, 

38) 

39from bioimageio.spec.utils import load_array 

40 

41from .axis import Axis, AxisId, AxisInfo, AxisLike, PerAxis 

42from .block_meta import split_multiple_shapes_into_blocks 

43from .common import Halo, MemberId, PerMember, SampleId, TotalNumberOfBlocks 

44from .io import load_tensor 

45from .sample import ( 

46 LinearSampleAxisTransform, 

47 Sample, 

48 SampleBlockMeta, 

49 sample_block_meta_generator, 

50) 

51from .stat_measures import Stat 

52from .tensor import Tensor 

53 

54TensorSource = Union[Tensor, xr.DataArray, NDArray[Any], Path] 

55 

56 

57def import_callable( 

58 node: Union[ 

59 ArchitectureFromFileDescr, 

60 ArchitectureFromLibraryDescr, 

61 CallableFromDepencency, 

62 CallableFromFile, 

63 ], 

64 /, 

65 **kwargs: Unpack[HashKwargs], 

66) -> Callable[..., Any]: 

67 """import a callable (e.g. a torch.nn.Module) from a spec node describing it""" 

68 if isinstance(node, CallableFromDepencency): 

69 module = importlib.import_module(node.module_name) 

70 c = getattr(module, str(node.callable_name)) 

71 elif isinstance(node, ArchitectureFromLibraryDescr): 

72 module = importlib.import_module(node.import_from) 

73 c = getattr(module, str(node.callable)) 

74 elif isinstance(node, CallableFromFile): 

75 c = _import_from_file_impl(node.source_file, str(node.callable_name), **kwargs) 

76 elif isinstance(node, ArchitectureFromFileDescr): 

77 c = _import_from_file_impl(node.source, str(node.callable), sha256=node.sha256) 

78 else: 

79 assert_never(node) 

80 

81 if not callable(c): 

82 raise ValueError(f"{node} (imported: {c}) is not callable") 

83 

84 return c 

85 

86 

87tmp_dirs_in_use: List[TemporaryDirectory[str]] = [] 

88"""keep global reference to temporary directories created during import to delay cleanup""" 

89 

90 

91def _import_from_file_impl( 

92 source: FileSource, callable_name: str, **kwargs: Unpack[HashKwargs] 

93): 

94 src_descr = FileDescr(source=source, **kwargs) 

95 # ensure sha is valid even if perform_io_checks=False 

96 # or the source has changed since last sha computation 

97 src_descr.validate_sha256(force_recompute=True) 

98 assert src_descr.sha256 is not None 

99 source_sha = src_descr.sha256 

100 

101 reader = src_descr.get_reader() 

102 # make sure we have unique module name 

103 module_name = f"{reader.original_file_name.split('.')[0]}_{source_sha}" 

104 

105 # make sure we have a unique and valid module name 

106 if not module_name.isidentifier(): 

107 module_name = f"custom_module_{source_sha}" 

108 assert module_name.isidentifier(), module_name 

109 

110 source_bytes = reader.read() 

111 

112 module = sys.modules.get(module_name) 

113 if module is None: 

114 try: 

115 td_kwargs: Dict[str, Any] = ( 

116 dict(ignore_cleanup_errors=True) if sys.version_info >= (3, 10) else {} 

117 ) 

118 if sys.version_info >= (3, 12): 

119 td_kwargs["delete"] = False 

120 

121 tmp_dir = TemporaryDirectory(**td_kwargs) 

122 # keep global ref to tmp_dir to delay cleanup until program exit 

123 # TODO: remove for py >= 3.12, when delete=False works 

124 tmp_dirs_in_use.append(tmp_dir) 

125 

126 module_path = Path(tmp_dir.name) / module_name 

127 if reader.original_file_name.endswith(".zip") or is_zipfile(reader): 

128 module_path.mkdir() 

129 ZipFile(reader).extractall(path=module_path) 

130 else: 

131 module_path = module_path.with_suffix(".py") 

132 _ = module_path.write_bytes(source_bytes) 

133 

134 importlib_spec = importlib.util.spec_from_file_location( 

135 module_name, str(module_path) 

136 ) 

137 

138 if importlib_spec is None: 

139 raise ImportError(f"Failed to import {source}") 

140 

141 module = importlib.util.module_from_spec(importlib_spec) 

142 

143 sys.modules[module_name] = module # cache this module 

144 

145 assert importlib_spec.loader is not None 

146 importlib_spec.loader.exec_module(module) 

147 

148 except Exception as e: 

149 del sys.modules[module_name] 

150 raise ImportError(f"Failed to import {source}") from e 

151 

152 try: 

153 callable_attr = getattr(module, callable_name) 

154 except AttributeError as e: 

155 raise AttributeError( 

156 f"Imported custom module from {source} has no `{callable_name}` attribute." 

157 ) from e 

158 except Exception as e: 

159 raise AttributeError( 

160 f"Failed to access `{callable_name}` attribute from custom module imported from {source} ." 

161 ) from e 

162 

163 else: 

164 return callable_attr 

165 

166 

167def get_axes_infos( 

168 io_descr: Union[ 

169 v0_4.InputTensorDescr, 

170 v0_4.OutputTensorDescr, 

171 v0_5.InputTensorDescr, 

172 v0_5.OutputTensorDescr, 

173 ], 

174) -> List[AxisInfo]: 

175 """get a unified, simplified axis representation from spec axes""" 

176 ret: List[AxisInfo] = [] 

177 for a in io_descr.axes: 

178 if isinstance(a, v0_5.AxisBase): 

179 ret.append(AxisInfo.create(Axis(id=a.id, type=a.type))) 

180 else: 

181 assert a in ("b", "i", "t", "c", "z", "y", "x") 

182 ret.append(AxisInfo.create(a)) 

183 

184 return ret 

185 

186 

187def get_member_id( 

188 tensor_description: Union[ 

189 v0_4.InputTensorDescr, 

190 v0_4.OutputTensorDescr, 

191 v0_5.InputTensorDescr, 

192 v0_5.OutputTensorDescr, 

193 ], 

194) -> MemberId: 

195 """get the normalized tensor ID, usable as a sample member ID""" 

196 

197 if isinstance(tensor_description, (v0_4.InputTensorDescr, v0_4.OutputTensorDescr)): 

198 return MemberId(tensor_description.name) 

199 elif isinstance( 

200 tensor_description, (v0_5.InputTensorDescr, v0_5.OutputTensorDescr) 

201 ): 

202 return tensor_description.id 

203 else: 

204 assert_never(tensor_description) 

205 

206 

207def get_member_ids( 

208 tensor_descriptions: Sequence[ 

209 Union[ 

210 v0_4.InputTensorDescr, 

211 v0_4.OutputTensorDescr, 

212 v0_5.InputTensorDescr, 

213 v0_5.OutputTensorDescr, 

214 ] 

215 ], 

216) -> List[MemberId]: 

217 """get normalized tensor IDs to be used as sample member IDs""" 

218 return [get_member_id(descr) for descr in tensor_descriptions] 

219 

220 

221def get_test_input_sample(model: AnyModelDescr) -> Sample: 

222 return _get_test_sample( 

223 model.inputs, 

224 model.test_inputs if isinstance(model, v0_4.ModelDescr) else model.inputs, 

225 ) 

226 

227 

228get_test_inputs = get_test_input_sample 

229"""DEPRECATED: use `get_test_input_sample` instead""" 

230 

231 

232def get_test_output_sample(model: AnyModelDescr) -> Sample: 

233 """returns a model's test output sample""" 

234 return _get_test_sample( 

235 model.outputs, 

236 model.test_outputs if isinstance(model, v0_4.ModelDescr) else model.outputs, 

237 ) 

238 

239 

240get_test_outputs = get_test_output_sample 

241"""DEPRECATED: use `get_test_input_sample` instead""" 

242 

243 

244def _get_test_sample( 

245 tensor_descrs: Sequence[ 

246 Union[ 

247 v0_4.InputTensorDescr, 

248 v0_4.OutputTensorDescr, 

249 v0_5.InputTensorDescr, 

250 v0_5.OutputTensorDescr, 

251 ] 

252 ], 

253 test_sources: Sequence[Union[FileSource, v0_5.TensorDescr]], 

254) -> Sample: 

255 """returns a model's input/output test sample""" 

256 member_ids = get_member_ids(tensor_descrs) 

257 arrays: List[NDArray[Any]] = [] 

258 for src in test_sources: 

259 if isinstance(src, (v0_5.InputTensorDescr, v0_5.OutputTensorDescr)): 

260 if src.test_tensor is None: 

261 raise ValueError( 

262 f"Model input '{src.id}' has no test tensor defined, cannot create test sample." 

263 ) 

264 arrays.append(load_array(src.test_tensor)) 

265 else: 

266 arrays.append(load_array(src)) 

267 

268 axes = [get_axes_infos(t) for t in tensor_descrs] 

269 return Sample( 

270 members={ 

271 m: Tensor.from_numpy(arr, dims=ax) 

272 for m, arr, ax in zip(member_ids, arrays, axes) 

273 }, 

274 stat={}, 

275 id="test-sample", 

276 ) 

277 

278 

279class IO_SampleBlockMeta(NamedTuple): 

280 input: SampleBlockMeta 

281 output: SampleBlockMeta 

282 

283 

284def get_input_halo(model: v0_5.ModelDescr, output_halo: PerMember[PerAxis[Halo]]): 

285 """returns which halo input tensors need to be divided into blocks with, such that 

286 `output_halo` can be cropped from their outputs without introducing gaps.""" 

287 input_halo: Dict[MemberId, Dict[AxisId, Halo]] = {} 

288 outputs = {t.id: t for t in model.outputs} 

289 all_tensors = {**{t.id: t for t in model.inputs}, **outputs} 

290 

291 for t, th in output_halo.items(): 

292 axes = {a.id: a for a in outputs[t].axes} 

293 

294 for a, ah in th.items(): 

295 s = axes[a].size 

296 if not isinstance(s, v0_5.SizeReference): 

297 raise ValueError( 

298 f"Unable to map output halo for {t}.{a} to an input axis" 

299 ) 

300 

301 axis = axes[a] 

302 ref_axis = {a.id: a for a in all_tensors[s.tensor_id].axes}[s.axis_id] 

303 

304 total_output_halo = sum(ah) 

305 total_input_halo = total_output_halo * axis.scale / ref_axis.scale 

306 assert ( 

307 total_input_halo == int(total_input_halo) and total_input_halo % 2 == 0 

308 ) 

309 input_halo.setdefault(s.tensor_id, {})[a] = Halo( 

310 int(total_input_halo // 2), int(total_input_halo // 2) 

311 ) 

312 

313 return input_halo 

314 

315 

316def get_block_transform( 

317 model: v0_5.ModelDescr, 

318) -> PerMember[PerAxis[Union[LinearSampleAxisTransform, int]]]: 

319 """returns how a model's output tensor shapes relates to its input shapes""" 

320 ret: Dict[MemberId, Dict[AxisId, Union[LinearSampleAxisTransform, int]]] = {} 

321 batch_axis_trf = None 

322 for ipt in model.inputs: 

323 for a in ipt.axes: 

324 if a.type == "batch": 

325 batch_axis_trf = LinearSampleAxisTransform( 

326 axis=a.id, scale=1, offset=0, member=ipt.id 

327 ) 

328 break 

329 if batch_axis_trf is not None: 

330 break 

331 axis_scales = { 

332 t.id: {a.id: a.scale for a in t.axes} 

333 for t in chain(model.inputs, model.outputs) 

334 } 

335 for out in model.outputs: 

336 new_axes: Dict[AxisId, Union[LinearSampleAxisTransform, int]] = {} 

337 for a in out.axes: 

338 if a.size is None: 

339 assert a.type == "batch" 

340 if batch_axis_trf is None: 

341 raise ValueError( 

342 "no batch axis found in any input tensor, but output tensor" 

343 + f" '{out.id}' has one." 

344 ) 

345 s = batch_axis_trf 

346 elif isinstance(a.size, int): 

347 s = a.size 

348 elif isinstance(a.size, v0_5.DataDependentSize): 

349 s = -1 

350 elif isinstance(a.size, v0_5.SizeReference): 

351 s = LinearSampleAxisTransform( 

352 axis=a.size.axis_id, 

353 scale=axis_scales[a.size.tensor_id][a.size.axis_id] / a.scale, 

354 offset=a.size.offset, 

355 member=a.size.tensor_id, 

356 ) 

357 else: 

358 assert_never(a.size) 

359 

360 new_axes[a.id] = s 

361 

362 ret[out.id] = new_axes 

363 

364 return ret 

365 

366 

367def get_io_sample_block_metas( 

368 model: v0_5.ModelDescr, 

369 input_sample_shape: PerMember[PerAxis[int]], 

370 ns: Mapping[Tuple[MemberId, AxisId], ParameterizedSize_N], 

371 batch_size: int = 1, 

372) -> Tuple[TotalNumberOfBlocks, Iterable[IO_SampleBlockMeta]]: 

373 """returns an iterable yielding meta data for corresponding input and output samples""" 

374 if not isinstance(model, v0_5.ModelDescr): 

375 raise TypeError(f"get_block_meta() not implemented for {type(model)}") 

376 

377 block_axis_sizes = model.get_axis_sizes(ns=ns, batch_size=batch_size) 

378 input_block_shape = { 

379 t: {aa: s for (tt, aa), s in block_axis_sizes.inputs.items() if tt == t} 

380 for t in {tt for tt, _ in block_axis_sizes.inputs} 

381 } 

382 output_halo = { 

383 t.id: { 

384 a.id: Halo(a.halo, a.halo) for a in t.axes if isinstance(a, v0_5.WithHalo) 

385 } 

386 for t in model.outputs 

387 } 

388 input_halo = get_input_halo(model, output_halo) 

389 

390 n_input_blocks, input_blocks = split_multiple_shapes_into_blocks( 

391 input_sample_shape, input_block_shape, halo=input_halo 

392 ) 

393 block_transform = get_block_transform(model) 

394 return n_input_blocks, ( 

395 IO_SampleBlockMeta(ipt, ipt.get_transformed(block_transform)) 

396 for ipt in sample_block_meta_generator( 

397 input_blocks, sample_shape=input_sample_shape, sample_id=None 

398 ) 

399 ) 

400 

401 

402def get_tensor( 

403 src: Union[ZipPath, TensorSource], 

404 ipt: Union[v0_4.InputTensorDescr, v0_5.InputTensorDescr], 

405): 

406 """helper to cast/load various tensor sources""" 

407 

408 if isinstance(src, Tensor): 

409 return src 

410 elif isinstance(src, xr.DataArray): 

411 return Tensor.from_xarray(src) 

412 elif isinstance(src, np.ndarray): 

413 return Tensor.from_numpy(src, dims=get_axes_infos(ipt)) 

414 else: 

415 return load_tensor(src, axes=get_axes_infos(ipt)) 

416 

417 

418def create_sample_for_model( 

419 model: AnyModelDescr, 

420 *, 

421 stat: Optional[Stat] = None, 

422 sample_id: SampleId = None, 

423 inputs: Union[PerMember[TensorSource], TensorSource], 

424) -> Sample: 

425 """Create a sample from a single set of input(s) for a specific bioimage.io model 

426 

427 Args: 

428 model: a bioimage.io model description 

429 stat: dictionary with sample and dataset statistics (may be updated in-place!) 

430 inputs: the input(s) constituting a single sample. 

431 """ 

432 

433 model_inputs = {get_member_id(d): d for d in model.inputs} 

434 if isinstance(inputs, collections.abc.Mapping): 

435 inputs = {MemberId(k): v for k, v in inputs.items()} 

436 elif len(model_inputs) == 1: 

437 inputs = {list(model_inputs)[0]: inputs} 

438 else: 

439 raise TypeError( 

440 f"Expected `inputs` to be a mapping with keys {tuple(model_inputs)}" 

441 ) 

442 

443 if unknown := {k for k in inputs if k not in model_inputs}: 

444 raise ValueError(f"Got unexpected inputs: {unknown}") 

445 

446 if missing := { 

447 k 

448 for k, v in model_inputs.items() 

449 if k not in inputs and not (isinstance(v, v0_5.InputTensorDescr) and v.optional) 

450 }: 

451 raise ValueError(f"Missing non-optional model inputs: {missing}") 

452 

453 return Sample( 

454 members={ 

455 m: get_tensor(inputs[m], ipt) 

456 for m, ipt in model_inputs.items() 

457 if m in inputs 

458 }, 

459 stat={} if stat is None else stat, 

460 id=sample_id, 

461 ) 

462 

463 

464def load_sample_for_model( 

465 *, 

466 model: AnyModelDescr, 

467 paths: PerMember[Path], 

468 axes: Optional[PerMember[Sequence[AxisLike]]] = None, 

469 stat: Optional[Stat] = None, 

470 sample_id: Optional[SampleId] = None, 

471): 

472 """load a single sample from `paths` that can be processed by `model`""" 

473 

474 if axes is None: 

475 axes = {} 

476 

477 # make sure members are keyed by MemberId, not string 

478 paths = {MemberId(k): v for k, v in paths.items()} 

479 axes = {MemberId(k): v for k, v in axes.items()} 

480 

481 model_inputs = {get_member_id(d): d for d in model.inputs} 

482 

483 if unknown := {k for k in paths if k not in model_inputs}: 

484 raise ValueError(f"Got unexpected paths for {unknown}") 

485 

486 if unknown := {k for k in axes if k not in model_inputs}: 

487 raise ValueError(f"Got unexpected axes hints for: {unknown}") 

488 

489 members: Dict[MemberId, Tensor] = {} 

490 for m, p in paths.items(): 

491 if m not in axes: 

492 axes[m] = get_axes_infos(model_inputs[m]) 

493 logger.debug( 

494 "loading '{}' from {} with default input axes {} ", 

495 m, 

496 p, 

497 axes[m], 

498 ) 

499 members[m] = load_tensor(p, axes[m]) 

500 

501 return Sample( 

502 members=members, 

503 stat={} if stat is None else stat, 

504 id=sample_id or tuple(sorted(paths.values())), 

505 )