Coverage for src / bioimageio / core / cli.py: 84%
372 statements
« prev ^ index » next coverage.py v7.13.4, created at 2026-02-13 09:46 +0000
« prev ^ index » next coverage.py v7.13.4, created at 2026-02-13 09:46 +0000
1"""bioimageio CLI
3Note: Some docstrings use a hair space ' '
4 to place the added '(default: ...)' on a new line.
5"""
7import json
8import shutil
9import subprocess
10import sys
11from abc import ABC
12from argparse import RawTextHelpFormatter
13from difflib import SequenceMatcher
14from functools import cached_property
15from io import StringIO
16from pathlib import Path
17from pprint import pformat, pprint
18from typing import (
19 Annotated,
20 Any,
21 Dict,
22 Iterable,
23 List,
24 Literal,
25 Mapping,
26 Optional,
27 Sequence,
28 Set,
29 Tuple,
30 Type,
31 Union,
32)
34import rich.markdown
35from loguru import logger
36from pydantic import (
37 AliasChoices,
38 BaseModel,
39 Field,
40 PlainSerializer,
41 WithJsonSchema,
42 model_validator,
43)
44from pydantic_settings import (
45 BaseSettings,
46 CliApp,
47 CliPositionalArg,
48 CliSettingsSource,
49 CliSubCommand,
50 JsonConfigSettingsSource,
51 PydanticBaseSettingsSource,
52 SettingsConfigDict,
53 YamlConfigSettingsSource,
54)
55from tqdm import tqdm
56from typing_extensions import assert_never
58import bioimageio.spec
59from bioimageio.core import __version__
60from bioimageio.spec import (
61 AnyModelDescr,
62 InvalidDescr,
63 ResourceDescr,
64 load_description,
65 save_bioimageio_yaml_only,
66 settings,
67 update_format,
68 update_hashes,
69)
70from bioimageio.spec._internal.io import is_yaml_value
71from bioimageio.spec._internal.io_utils import open_bioimageio_yaml
72from bioimageio.spec._internal.types import FormatVersionPlaceholder, NotEmpty
73from bioimageio.spec.dataset import DatasetDescr
74from bioimageio.spec.model import ModelDescr, v0_4, v0_5
75from bioimageio.spec.notebook import NotebookDescr
76from bioimageio.spec.utils import ensure_description_is_model, get_reader, write_yaml
78from .commands import WeightFormatArgAll, WeightFormatArgAny, package, test
79from .common import MemberId, SampleId, SupportedWeightsFormat
80from .digest_spec import get_member_ids, load_sample_for_model
81from .io import load_dataset_stat, save_dataset_stat, save_sample
82from .prediction import create_prediction_pipeline
83from .proc_setup import (
84 DatasetMeasure,
85 Measure,
86 MeasureValue,
87 StatsCalculator,
88 get_required_dataset_measures,
89)
90from .sample import Sample
91from .stat_measures import Stat
92from .utils import compare
93from .weight_converters._add_weights import add_weights
95WEIGHT_FORMAT_ALIASES = AliasChoices(
96 "weight-format",
97 "weights-format",
98 "weight_format",
99 "weights_format",
100)
103class CmdBase(BaseModel, use_attribute_docstrings=True, cli_implicit_flags=True):
104 pass
107class ArgMixin(BaseModel, use_attribute_docstrings=True, cli_implicit_flags=True):
108 pass
111class WithSummaryLogging(ArgMixin):
112 summary: List[Union[Literal["display"], Path]] = Field(
113 default_factory=lambda: ["display"],
114 examples=[
115 Path("summary.md"),
116 Path("bioimageio_summaries/"),
117 ["display", Path("summary.md")],
118 ],
119 )
120 """Display the validation summary or save it as JSON, Markdown or HTML.
121 The format is chosen based on the suffix: `.json`, `.md`, `.html`.
122 If a folder is given (path w/o suffix) the summary is saved in all formats.
123 Choose/add `"display"` to render the validation summary to the terminal.
124 """
126 def log(self, descr: Union[ResourceDescr, InvalidDescr]):
127 _ = descr.validation_summary.log(self.summary)
130class WithSource(ArgMixin):
131 source: CliPositionalArg[str]
132 """Url/path to a (folder with a) bioimageio.yaml/rdf.yaml file
133 or a bioimage.io resource identifier, e.g. 'affable-shark'"""
135 @cached_property
136 def descr(self):
137 return load_description(self.source)
139 @property
140 def descr_id(self) -> str:
141 """a more user-friendly description id
142 (replacing legacy ids with their nicknames)
143 """
144 if isinstance(self.descr, InvalidDescr):
145 return str(getattr(self.descr, "id", getattr(self.descr, "name")))
147 nickname = None
148 if (
149 isinstance(self.descr.config, v0_5.Config)
150 and (bio_config := self.descr.config.bioimageio)
151 and bio_config.model_extra is not None
152 ):
153 nickname = bio_config.model_extra.get("nickname")
155 return str(nickname or self.descr.id or self.descr.name)
158class ValidateFormatCmd(CmdBase, WithSource, WithSummaryLogging):
159 """Validate the meta data format of a bioimageio resource."""
161 perform_io_checks: bool = Field(
162 settings.perform_io_checks, alias="perform-io-checks"
163 )
164 """Wether or not to perform validations that requires downloading remote files.
165 Note: Default value is set by `BIOIMAGEIO_PERFORM_IO_CHECKS` environment variable.
166 """
168 @cached_property
169 def descr(self):
170 return load_description(self.source, perform_io_checks=self.perform_io_checks)
172 def cli_cmd(self):
173 self.log(self.descr)
174 sys.exit(
175 0
176 if self.descr.validation_summary.status in ("valid-format", "passed")
177 else 1
178 )
181class TestCmd(CmdBase, WithSource, WithSummaryLogging):
182 """Test a bioimageio resource (beyond meta data formatting)."""
184 weight_format: WeightFormatArgAll = Field(
185 "all",
186 alias="weight-format",
187 validation_alias=WEIGHT_FORMAT_ALIASES,
188 )
189 """The weight format to limit testing to.
191 (only relevant for model resources)"""
193 devices: Optional[List[str]] = None
194 """Device(s) to use for testing"""
196 runtime_env: Union[Literal["currently-active", "as-described"], Path] = Field(
197 "currently-active", alias="runtime-env"
198 )
199 """The python environment to run the tests in
200 - `"currently-active"`: use active Python interpreter
201 - `"as-described"`: generate a conda environment YAML file based on the model
202 weights description.
203 - A path to a conda environment YAML.
204 Note: The `bioimageio.core` dependency will be added automatically if not present.
205 """
207 working_dir: Optional[Path] = Field(None, alias="working-dir")
208 """(for debugging) Directory to save any temporary files."""
210 determinism: Literal["seed_only", "full"] = "seed_only"
211 """Modes to improve reproducibility of test outputs."""
213 stop_early: bool = Field(
214 False, alias="stop-early", validation_alias=AliasChoices("stop-early", "x")
215 )
216 """Do not run further subtests after a failed one."""
218 format_version: Union[FormatVersionPlaceholder, str] = Field(
219 "discover", alias="format-version"
220 )
221 """The format version to use for testing.
222 - 'latest': Use the latest implemented format version for the given resource type (may trigger auto updating)
223 - 'discover': Use the format version as described in the resource description
224 - '0.4', '0.5', ...: Use the specified format version (may trigger auto updating)
225 """
227 def cli_cmd(self):
228 sys.exit(
229 test(
230 self.descr,
231 weight_format=self.weight_format,
232 devices=self.devices,
233 summary=self.summary,
234 runtime_env=self.runtime_env,
235 determinism=self.determinism,
236 format_version=self.format_version,
237 working_dir=self.working_dir,
238 )
239 )
242class PackageCmd(CmdBase, WithSource, WithSummaryLogging):
243 """Save a resource's metadata with its associated files."""
245 path: CliPositionalArg[Path]
246 """The path to write the (zipped) package to.
247 If it does not have a `.zip` suffix
248 this command will save the package as an unzipped folder instead."""
250 weight_format: WeightFormatArgAll = Field(
251 "all",
252 alias="weight-format",
253 validation_alias=WEIGHT_FORMAT_ALIASES,
254 )
255 """The weight format to include in the package (for model descriptions only)."""
257 def cli_cmd(self):
258 if isinstance(self.descr, InvalidDescr):
259 self.log(self.descr)
260 raise ValueError(f"Invalid {self.descr.type} description.")
262 sys.exit(
263 package(
264 self.descr,
265 self.path,
266 weight_format=self.weight_format,
267 )
268 )
271def _get_stat(
272 model_descr: AnyModelDescr,
273 dataset: Iterable[Sample],
274 dataset_length: int,
275 stats_path: Path,
276) -> Mapping[DatasetMeasure, MeasureValue]:
277 req_dataset_meas, _ = get_required_dataset_measures(model_descr)
278 if not req_dataset_meas:
279 return {}
281 req_dataset_meas, _ = get_required_dataset_measures(model_descr)
283 if stats_path.exists():
284 logger.info("loading precomputed dataset measures from {}", stats_path)
285 stat = load_dataset_stat(stats_path)
286 for m in req_dataset_meas:
287 if m not in stat:
288 raise ValueError(f"Missing {m} in {stats_path}")
290 return stat
292 stats_calc = StatsCalculator(req_dataset_meas)
294 for sample in tqdm(
295 dataset, total=dataset_length, desc="precomputing dataset stats", unit="sample"
296 ):
297 stats_calc.update(sample)
299 stat = stats_calc.finalize()
300 save_dataset_stat(stat, stats_path)
302 return stat
305class UpdateCmdBase(CmdBase, WithSource, ABC):
306 output: Union[Literal["display", "stdout"], Path] = "display"
307 """Output updated bioimageio.yaml to the terminal or write to a file.
308 Notes:
309 - `"display"`: Render to the terminal with syntax highlighting.
310 - `"stdout"`: Write to sys.stdout without syntax highligthing.
311 (More convenient for copying the updated bioimageio.yaml from the terminal.)
312 """
314 diff: Union[bool, Path] = Field(True, alias="diff")
315 """Output a diff of original and updated bioimageio.yaml.
316 If a given path has an `.html` extension, a standalone HTML file is written,
317 otherwise the diff is saved in unified diff format (pure text).
318 """
320 exclude_unset: bool = Field(True, alias="exclude-unset")
321 """Exclude fields that have not explicitly be set."""
323 exclude_defaults: bool = Field(False, alias="exclude-defaults")
324 """Exclude fields that have the default value (even if set explicitly)."""
326 @cached_property
327 def updated(self) -> Union[ResourceDescr, InvalidDescr]:
328 raise NotImplementedError
330 def cli_cmd(self):
331 original_yaml = open_bioimageio_yaml(self.source).unparsed_content
332 assert isinstance(original_yaml, str)
333 stream = StringIO()
335 save_bioimageio_yaml_only(
336 self.updated,
337 stream,
338 exclude_unset=self.exclude_unset,
339 exclude_defaults=self.exclude_defaults,
340 )
341 updated_yaml = stream.getvalue()
343 diff = compare(
344 original_yaml.split("\n"),
345 updated_yaml.split("\n"),
346 diff_format=(
347 "html"
348 if isinstance(self.diff, Path) and self.diff.suffix == ".html"
349 else "unified"
350 ),
351 )
353 if isinstance(self.diff, Path):
354 _ = self.diff.write_text(diff, encoding="utf-8")
355 elif self.diff:
356 console = rich.console.Console()
357 diff_md = f"## Diff\n\n````````diff\n{diff}\n````````"
358 console.print(rich.markdown.Markdown(diff_md))
360 if isinstance(self.output, Path):
361 _ = self.output.write_text(updated_yaml, encoding="utf-8")
362 logger.info(f"written updated description to {self.output}")
363 elif self.output == "display":
364 updated_md = f"## Updated bioimageio.yaml\n\n```yaml\n{updated_yaml}\n```"
365 rich.console.Console().print(rich.markdown.Markdown(updated_md))
366 elif self.output == "stdout":
367 print(updated_yaml)
368 else:
369 assert_never(self.output)
371 if isinstance(self.updated, InvalidDescr):
372 logger.warning("Update resulted in invalid description")
373 _ = self.updated.validation_summary.display()
376class UpdateFormatCmd(UpdateCmdBase):
377 """Update the metadata format to the latest format version."""
379 exclude_defaults: bool = Field(True, alias="exclude-defaults")
380 """Exclude fields that have the default value (even if set explicitly).
382 Note:
383 The update process sets most unset fields explicitly with their default value.
384 """
386 perform_io_checks: bool = Field(
387 settings.perform_io_checks, alias="perform-io-checks"
388 )
389 """Wether or not to attempt validation that may require file download.
390 If `True` file hash values are added if not present."""
392 @cached_property
393 def updated(self):
394 return update_format(
395 self.source,
396 exclude_defaults=self.exclude_defaults,
397 perform_io_checks=self.perform_io_checks,
398 )
401class UpdateHashesCmd(UpdateCmdBase):
402 """Create a bioimageio.yaml description with updated file hashes."""
404 @cached_property
405 def updated(self):
406 return update_hashes(self.source)
409class PredictCmd(CmdBase, WithSource):
410 """Run inference on your data with a bioimage.io model."""
412 inputs: NotEmpty[List[Union[str, NotEmpty[List[str]]]]] = Field(
413 default_factory=lambda: ["{input_id}/001.tif"]
414 )
415 """Model input sample paths (for each input tensor)
417 The input paths are expected to have shape...
418 - (n_samples,) or (n_samples,1) for models expecting a single input tensor
419 - (n_samples,) containing the substring '{input_id}', or
420 - (n_samples, n_model_inputs) to provide each input tensor path explicitly.
422 All substrings that are replaced by metadata from the model description:
423 - '{model_id}'
424 - '{input_id}'
426 Example inputs to process sample 'a' and 'b'
427 for a model expecting a 'raw' and a 'mask' input tensor:
428 --inputs="[[\\"a_raw.tif\\",\\"a_mask.tif\\"],[\\"b_raw.tif\\",\\"b_mask.tif\\"]]"
429 (Note that JSON double quotes need to be escaped.)
431 Alternatively a `bioimageio-cli.yaml` (or `bioimageio-cli.json`) file
432 may provide the arguments, e.g.:
433 ```yaml
434 inputs:
435 - [a_raw.tif, a_mask.tif]
436 - [b_raw.tif, b_mask.tif]
437 ```
439 `.npy` and any file extension supported by imageio are supported.
440 Aavailable formats are listed at
441 https://imageio.readthedocs.io/en/stable/formats/index.html#all-formats.
442 Some formats have additional dependencies.
445 """
447 outputs: Union[str, NotEmpty[Tuple[str, ...]]] = (
448 "outputs_{model_id}/{output_id}/{sample_id}.tif"
449 )
450 """Model output path pattern (per output tensor)
452 All substrings that are replaced:
453 - '{model_id}' (from model description)
454 - '{output_id}' (from model description)
455 - '{sample_id}' (extracted from input paths)
458 """
460 overwrite: bool = False
461 """allow overwriting existing output files"""
463 blockwise: bool = False
464 """process inputs blockwise"""
466 stats: Annotated[
467 Path,
468 WithJsonSchema({"type": "string"}),
469 PlainSerializer(lambda p: p.as_posix(), return_type=str),
470 ] = Path("dataset_statistics.json")
471 """path to dataset statistics
472 (will be written if it does not exist,
473 but the model requires statistical dataset measures)
474 """
476 preview: bool = False
477 """preview which files would be processed
478 and what outputs would be generated."""
480 weight_format: WeightFormatArgAny = Field(
481 "any",
482 alias="weight-format",
483 validation_alias=WEIGHT_FORMAT_ALIASES,
484 )
485 """The weight format to use."""
487 example: bool = False
488 """generate and run an example
490 1. downloads example model inputs
491 2. creates a `{model_id}_example` folder
492 3. writes input arguments to `{model_id}_example/bioimageio-cli.yaml`
493 4. executes a preview dry-run
494 5. executes prediction with example input
497 """
499 def _example(self):
500 model_descr = ensure_description_is_model(self.descr)
501 input_ids = get_member_ids(model_descr.inputs)
502 example_inputs = (
503 model_descr.sample_inputs
504 if isinstance(model_descr, v0_4.ModelDescr)
505 else [
506 t
507 for ipt in model_descr.inputs
508 if (t := ipt.sample_tensor or ipt.test_tensor)
509 ]
510 )
511 if not example_inputs:
512 raise ValueError(f"{self.descr_id} does not specify any example inputs.")
514 inputs001: List[str] = []
515 example_path = Path(f"{self.descr_id}_example")
516 example_path.mkdir(exist_ok=True)
518 for t, src in zip(input_ids, example_inputs):
519 reader = get_reader(src)
520 dst = Path(f"{example_path}/{t}/001{reader.suffix}")
521 dst.parent.mkdir(parents=True, exist_ok=True)
522 inputs001.append(dst.as_posix())
523 with dst.open("wb") as f:
524 shutil.copyfileobj(reader, f)
526 inputs = [inputs001]
527 output_pattern = f"{example_path}/outputs/{{output_id}}/{{sample_id}}.tif"
529 bioimageio_cli_path = example_path / YAML_FILE
530 stats_file = "dataset_statistics.json"
531 stats = (example_path / stats_file).as_posix()
532 cli_example_args = dict(
533 inputs=inputs,
534 outputs=output_pattern,
535 stats=stats_file,
536 blockwise=self.blockwise,
537 )
538 assert is_yaml_value(cli_example_args), cli_example_args
539 write_yaml(
540 cli_example_args,
541 bioimageio_cli_path,
542 )
544 yaml_file_content = None
546 # escaped double quotes
547 inputs_json = json.dumps(inputs)
548 inputs_escaped = inputs_json.replace('"', r"\"")
549 source_escaped = self.source.replace('"', r"\"")
551 def get_example_command(preview: bool, escape: bool = False):
552 q: str = '"' if escape else ""
554 return [
555 "bioimageio",
556 "predict",
557 # --no-preview not supported for py=3.8
558 *(["--preview"] if preview else []),
559 "--overwrite",
560 *(["--blockwise"] if self.blockwise else []),
561 f"--stats={q}{stats}{q}",
562 f"--inputs={q}{inputs_escaped if escape else inputs_json}{q}",
563 f"--outputs={q}{output_pattern}{q}",
564 f"{q}{source_escaped if escape else self.source}{q}",
565 ]
567 if Path(YAML_FILE).exists():
568 logger.info(
569 "temporarily removing '{}' to execute example prediction", YAML_FILE
570 )
571 yaml_file_content = Path(YAML_FILE).read_bytes()
572 Path(YAML_FILE).unlink()
574 try:
575 _ = subprocess.run(get_example_command(True), check=True)
576 _ = subprocess.run(get_example_command(False), check=True)
577 finally:
578 if yaml_file_content is not None:
579 _ = Path(YAML_FILE).write_bytes(yaml_file_content)
580 logger.debug("restored '{}'", YAML_FILE)
582 print(
583 "🎉 Sucessfully ran example prediction!\n"
584 + "To predict the example input using the CLI example config file"
585 + f" {example_path / YAML_FILE}, execute `bioimageio predict` from {example_path}:\n"
586 + f"$ cd {str(example_path)}\n"
587 + f'$ bioimageio predict "{source_escaped}"\n\n'
588 + "Alternatively run the following command"
589 + " in the current workind directory, not the example folder:\n$ "
590 + " ".join(get_example_command(False, escape=True))
591 + f"\n(note that a local '{JSON_FILE}' or '{YAML_FILE}' may interfere with this)"
592 )
594 def cli_cmd(self):
595 if self.example:
596 return self._example()
598 model_descr = ensure_description_is_model(self.descr)
600 input_ids = get_member_ids(model_descr.inputs)
601 output_ids = get_member_ids(model_descr.outputs)
603 minimum_input_ids = tuple(
604 str(ipt.id) if isinstance(ipt, v0_5.InputTensorDescr) else str(ipt.name)
605 for ipt in model_descr.inputs
606 if not isinstance(ipt, v0_5.InputTensorDescr) or not ipt.optional
607 )
608 maximum_input_ids = tuple(
609 str(ipt.id) if isinstance(ipt, v0_5.InputTensorDescr) else str(ipt.name)
610 for ipt in model_descr.inputs
611 )
613 def expand_inputs(i: int, ipt: Union[str, Sequence[str]]) -> Tuple[str, ...]:
614 if isinstance(ipt, str):
615 ipts = tuple(
616 ipt.format(model_id=self.descr_id, input_id=t) for t in input_ids
617 )
618 else:
619 ipts = tuple(
620 p.format(model_id=self.descr_id, input_id=t)
621 for t, p in zip(input_ids, ipt)
622 )
624 if len(set(ipts)) < len(ipts):
625 if len(minimum_input_ids) == len(maximum_input_ids):
626 n = len(minimum_input_ids)
627 else:
628 n = f"{len(minimum_input_ids)}-{len(maximum_input_ids)}"
630 raise ValueError(
631 f"[input sample #{i}] Include '{{input_id}}' in path pattern or explicitly specify {n} distinct input paths (got {ipt})"
632 )
634 if len(ipts) < len(minimum_input_ids):
635 raise ValueError(
636 f"[input sample #{i}] Expected at least {len(minimum_input_ids)} inputs {minimum_input_ids}, got {ipts}"
637 )
639 if len(ipts) > len(maximum_input_ids):
640 raise ValueError(
641 f"Expected at most {len(maximum_input_ids)} inputs {maximum_input_ids}, got {ipts}"
642 )
644 return ipts
646 inputs = [expand_inputs(i, ipt) for i, ipt in enumerate(self.inputs, start=1)]
648 sample_paths_in = [
649 {t: Path(p) for t, p in zip(input_ids, ipts)} for ipts in inputs
650 ]
652 sample_ids = _get_sample_ids(sample_paths_in)
654 def expand_outputs():
655 if isinstance(self.outputs, str):
656 outputs = [
657 tuple(
658 Path(
659 self.outputs.format(
660 model_id=self.descr_id, output_id=t, sample_id=s
661 )
662 )
663 for t in output_ids
664 )
665 for s in sample_ids
666 ]
667 else:
668 outputs = [
669 tuple(
670 Path(p.format(model_id=self.descr_id, output_id=t, sample_id=s))
671 for t, p in zip(output_ids, self.outputs)
672 )
673 for s in sample_ids
674 ]
675 # check for distinctness and correct number within each output sample
676 for i, out in enumerate(outputs, start=1):
677 if len(set(out)) < len(out):
678 raise ValueError(
679 f"[output sample #{i}] Include '{{output_id}}' in path pattern or explicitly specify {len(output_ids)} distinct output paths (got {out})"
680 )
682 if len(out) != len(output_ids):
683 raise ValueError(
684 f"[output sample #{i}] Expected {len(output_ids)} outputs {output_ids}, got {out}"
685 )
687 # check for distinctness across all output samples
688 all_output_paths = [p for out in outputs for p in out]
689 if len(set(all_output_paths)) < len(all_output_paths):
690 raise ValueError(
691 "Output paths are not distinct across samples. "
692 + f"Make sure to include '{{sample_id}}' in the output path pattern."
693 )
695 return outputs
697 outputs = expand_outputs()
699 sample_paths_out = [
700 {MemberId(t): Path(p) for t, p in zip(output_ids, out)} for out in outputs
701 ]
703 if not self.overwrite:
704 for sample_paths in sample_paths_out:
705 for p in sample_paths.values():
706 if p.exists():
707 raise FileExistsError(
708 f"{p} already exists. use --overwrite to (re-)write outputs anyway."
709 )
710 if self.preview:
711 print("🛈 bioimageio prediction preview structure:")
712 pprint(
713 {
714 "{sample_id}": dict(
715 inputs={"{input_id}": "<input path>"},
716 outputs={"{output_id}": "<output path>"},
717 )
718 }
719 )
720 print("🔎 bioimageio prediction preview output:")
721 pprint(
722 {
723 s: dict(
724 inputs={t: p.as_posix() for t, p in sp_in.items()},
725 outputs={t: p.as_posix() for t, p in sp_out.items()},
726 )
727 for s, sp_in, sp_out in zip(
728 sample_ids, sample_paths_in, sample_paths_out
729 )
730 }
731 )
732 return
734 def input_dataset(stat: Stat):
735 for s, sp_in in zip(sample_ids, sample_paths_in):
736 yield load_sample_for_model(
737 model=model_descr,
738 paths=sp_in,
739 stat=stat,
740 sample_id=s,
741 )
743 stat: Dict[Measure, MeasureValue] = dict(
744 _get_stat(
745 model_descr, input_dataset({}), len(sample_ids), self.stats
746 ).items()
747 )
749 pp = create_prediction_pipeline(
750 model_descr,
751 weight_format=None if self.weight_format == "any" else self.weight_format,
752 )
753 predict_method = (
754 pp.predict_sample_with_blocking
755 if self.blockwise
756 else pp.predict_sample_without_blocking
757 )
759 for sample_in, sp_out in tqdm(
760 zip(input_dataset(dict(stat)), sample_paths_out),
761 total=len(inputs),
762 desc=f"predict with {self.descr_id}",
763 unit="sample",
764 ):
765 sample_out = predict_method(sample_in)
766 save_sample(sp_out, sample_out)
769class AddWeightsCmd(CmdBase, WithSource, WithSummaryLogging):
770 """Add additional weights to a model description by converting from available formats."""
772 output: CliPositionalArg[Path]
773 """The path to write the updated model package to."""
775 source_format: Optional[SupportedWeightsFormat] = Field(None, alias="source-format")
776 """Exclusively use these weights to convert to other formats."""
778 target_format: Optional[SupportedWeightsFormat] = Field(None, alias="target-format")
779 """Exclusively add this weight format."""
781 verbose: bool = False
782 """Log more (error) output."""
784 tracing: bool = True
785 """Allow tracing when converting pytorch_state_dict to torchscript
786 (still uses scripting if possible)."""
788 def cli_cmd(self):
789 model_descr = ensure_description_is_model(self.descr)
790 if isinstance(model_descr, v0_4.ModelDescr):
791 raise TypeError(
792 f"model format {model_descr.format_version} not supported."
793 + " Please update the model first."
794 )
795 updated_model_descr = add_weights(
796 model_descr,
797 output_path=self.output,
798 source_format=self.source_format,
799 target_format=self.target_format,
800 verbose=self.verbose,
801 allow_tracing=self.tracing,
802 )
803 self.log(updated_model_descr)
806JSON_FILE = "bioimageio-cli.json"
807YAML_FILE = "bioimageio-cli.yaml"
810class Bioimageio(
811 BaseSettings,
812 cli_implicit_flags=True,
813 cli_parse_args=True,
814 cli_prog_name="bioimageio",
815 cli_use_class_docs_for_groups=True,
816 use_attribute_docstrings=True,
817):
818 """bioimageio - CLI for bioimage.io resources 🦒"""
820 model_config = SettingsConfigDict(
821 json_file=JSON_FILE,
822 yaml_file=YAML_FILE,
823 )
825 validate_format: CliSubCommand[ValidateFormatCmd] = Field(alias="validate-format")
826 "Check a resource's metadata format"
828 test: CliSubCommand[TestCmd]
829 "Test a bioimageio resource (beyond meta data formatting)"
831 package: CliSubCommand[PackageCmd]
832 "Package a resource"
834 predict: CliSubCommand[PredictCmd]
835 "Predict with a model resource"
837 update_format: CliSubCommand[UpdateFormatCmd] = Field(alias="update-format")
838 """Update the metadata format"""
840 update_hashes: CliSubCommand[UpdateHashesCmd] = Field(alias="update-hashes")
841 """Create a bioimageio.yaml description with updated file hashes."""
843 add_weights: CliSubCommand[AddWeightsCmd] = Field(alias="add-weights")
844 """Add additional weights to a model description by converting from available formats."""
846 @classmethod
847 def settings_customise_sources(
848 cls,
849 settings_cls: Type[BaseSettings],
850 init_settings: PydanticBaseSettingsSource,
851 env_settings: PydanticBaseSettingsSource,
852 dotenv_settings: PydanticBaseSettingsSource,
853 file_secret_settings: PydanticBaseSettingsSource,
854 ) -> Tuple[PydanticBaseSettingsSource, ...]:
855 cli: CliSettingsSource[BaseSettings] = CliSettingsSource(
856 settings_cls,
857 cli_parse_args=True,
858 formatter_class=RawTextHelpFormatter,
859 )
860 sys_args = pformat(sys.argv)
861 logger.info("starting CLI with arguments:\n{}", sys_args)
862 return (
863 cli,
864 init_settings,
865 YamlConfigSettingsSource(settings_cls),
866 JsonConfigSettingsSource(settings_cls),
867 )
869 @model_validator(mode="before")
870 @classmethod
871 def _log(cls, data: Any):
872 logger.info(
873 "loaded CLI input:\n{}",
874 pformat({k: v for k, v in data.items() if v is not None}),
875 )
876 return data
878 def cli_cmd(self) -> None:
879 logger.info(
880 "executing CLI command:\n{}",
881 pformat({k: v for k, v in self.model_dump().items() if v is not None}),
882 )
883 _ = CliApp.run_subcommand(self)
886assert isinstance(Bioimageio.__doc__, str)
887Bioimageio.__doc__ += f"""
889library versions:
890 bioimageio.core {__version__}
891 bioimageio.spec {bioimageio.spec.__version__}
893spec format versions:
894 model RDF {ModelDescr.implemented_format_version}
895 dataset RDF {DatasetDescr.implemented_format_version}
896 notebook RDF {NotebookDescr.implemented_format_version}
898"""
901def _get_sample_ids(
902 input_paths: Sequence[Mapping[MemberId, Path]],
903) -> Sequence[SampleId]:
904 """Get sample ids for given input paths, based on the common path per sample.
906 Falls back to sample01, samle02, etc..."""
908 matcher = SequenceMatcher()
910 def get_common_seq(seqs: Sequence[Sequence[str]]) -> Sequence[str]:
911 """extract a common sequence from multiple sequences
912 (order sensitive; strips whitespace and slashes)
913 """
914 common = seqs[0]
916 for seq in seqs[1:]:
917 if not seq:
918 continue
919 matcher.set_seqs(common, seq)
920 i, _, size = matcher.find_longest_match()
921 common = common[i : i + size]
923 if isinstance(common, str):
924 common = common.strip().strip("/")
925 else:
926 common = [cs for c in common if (cs := c.strip().strip("/"))]
928 if not common:
929 raise ValueError(f"failed to find common sequence for {seqs}")
931 return common
933 def get_shorter_diff(seqs: Sequence[Sequence[str]]) -> List[Sequence[str]]:
934 """get a shorter sequence whose entries are still unique
935 (order sensitive, not minimal sequence)
936 """
937 min_seq_len = min(len(s) for s in seqs)
938 # cut from the start
939 for start in range(min_seq_len - 1, -1, -1):
940 shortened = [s[start:] for s in seqs]
941 if len(set(shortened)) == len(seqs):
942 min_seq_len -= start
943 break
944 else:
945 seen: Set[Sequence[str]] = set()
946 dupes = [s for s in seqs if s in seen or seen.add(s)]
947 raise ValueError(f"Found duplicate entries {dupes}")
949 # cut from the end
950 for end in range(min_seq_len - 1, 1, -1):
951 shortened = [s[:end] for s in shortened]
952 if len(set(shortened)) == len(seqs):
953 break
955 return shortened
957 full_tensor_ids = [
958 sorted(
959 p.resolve().with_suffix("").as_posix() for p in input_sample_paths.values()
960 )
961 for input_sample_paths in input_paths
962 ]
963 try:
964 long_sample_ids = [get_common_seq(t) for t in full_tensor_ids]
965 sample_ids = get_shorter_diff(long_sample_ids)
966 except ValueError as e:
967 raise ValueError(f"failed to extract sample ids: {e}")
969 return sample_ids