Coverage for bioimageio/core/tensor.py: 85%

242 statements  

« prev     ^ index     » next       coverage.py v7.9.2, created at 2025-07-16 15:20 +0000

1from __future__ import annotations 

2 

3import collections.abc 

4from itertools import permutations 

5from typing import ( 

6 TYPE_CHECKING, 

7 Any, 

8 Callable, 

9 Dict, 

10 Iterator, 

11 Mapping, 

12 Optional, 

13 Sequence, 

14 Tuple, 

15 Union, 

16 cast, 

17 get_args, 

18) 

19 

20import numpy as np 

21import xarray as xr 

22from loguru import logger 

23from numpy.typing import DTypeLike, NDArray 

24from typing_extensions import Self, assert_never 

25 

26from bioimageio.spec.model import v0_5 

27 

28from ._magic_tensor_ops import MagicTensorOpsMixin 

29from .axis import Axis, AxisId, AxisInfo, AxisLike, PerAxis 

30from .common import ( 

31 CropWhere, 

32 DTypeStr, 

33 PadMode, 

34 PadWhere, 

35 PadWidth, 

36 PadWidthLike, 

37 SliceInfo, 

38) 

39 

40if TYPE_CHECKING: 

41 from numpy.typing import ArrayLike, NDArray 

42 

43 

44_ScalarOrArray = Union["ArrayLike", np.generic, "NDArray[Any]"] # TODO: add "DaskArray" 

45 

46 

47# TODO: complete docstrings 

48class Tensor(MagicTensorOpsMixin): 

49 """A wrapper around an xr.DataArray for better integration with bioimageio.spec 

50 and improved type annotations.""" 

51 

52 _Compatible = Union["Tensor", xr.DataArray, _ScalarOrArray] 

53 

54 def __init__( 

55 self, 

56 array: NDArray[Any], 

57 dims: Sequence[Union[AxisId, AxisLike]], 

58 ) -> None: 

59 super().__init__() 

60 axes = tuple( 

61 a if isinstance(a, AxisId) else AxisInfo.create(a).id for a in dims 

62 ) 

63 self._data = xr.DataArray(array, dims=axes) 

64 

65 def __array__(self, dtype: DTypeLike = None): 

66 return np.asarray(self._data, dtype=dtype) 

67 

68 def __getitem__( 

69 self, 

70 key: Union[ 

71 SliceInfo, 

72 slice, 

73 int, 

74 PerAxis[Union[SliceInfo, slice, int]], 

75 Tensor, 

76 xr.DataArray, 

77 ], 

78 ) -> Self: 

79 if isinstance(key, SliceInfo): 

80 key = slice(*key) 

81 elif isinstance(key, collections.abc.Mapping): 

82 key = { 

83 a: s if isinstance(s, int) else s if isinstance(s, slice) else slice(*s) 

84 for a, s in key.items() 

85 } 

86 elif isinstance(key, Tensor): 

87 key = key._data 

88 

89 return self.__class__.from_xarray(self._data[key]) 

90 

91 def __setitem__( 

92 self, 

93 key: Union[PerAxis[Union[SliceInfo, slice]], Tensor, xr.DataArray], 

94 value: Union[Tensor, xr.DataArray, float, int], 

95 ) -> None: 

96 if isinstance(key, Tensor): 

97 key = key._data 

98 elif isinstance(key, xr.DataArray): 

99 pass 

100 else: 

101 key = {a: s if isinstance(s, slice) else slice(*s) for a, s in key.items()} 

102 

103 if isinstance(value, Tensor): 

104 value = value._data 

105 

106 self._data[key] = value 

107 

108 def __len__(self) -> int: 

109 return len(self.data) 

110 

111 def _iter(self: Any) -> Iterator[Any]: 

112 for n in range(len(self)): 

113 yield self[n] 

114 

115 def __iter__(self: Any) -> Iterator[Any]: 

116 if self.ndim == 0: 

117 raise TypeError("iteration over a 0-d array") 

118 return self._iter() 

119 

120 def _binary_op( 

121 self, 

122 other: _Compatible, 

123 f: Callable[[Any, Any], Any], 

124 reflexive: bool = False, 

125 ) -> Self: 

126 data = self._data._binary_op( # pyright: ignore[reportPrivateUsage] 

127 (other._data if isinstance(other, Tensor) else other), 

128 f, 

129 reflexive, 

130 ) 

131 return self.__class__.from_xarray(data) 

132 

133 def _inplace_binary_op( 

134 self, 

135 other: _Compatible, 

136 f: Callable[[Any, Any], Any], 

137 ) -> Self: 

138 _ = self._data._inplace_binary_op( # pyright: ignore[reportPrivateUsage] 

139 ( 

140 other_d 

141 if (other_d := getattr(other, "data")) is not None 

142 and isinstance( 

143 other_d, 

144 xr.DataArray, 

145 ) 

146 else other 

147 ), 

148 f, 

149 ) 

150 return self 

151 

152 def _unary_op(self, f: Callable[[Any], Any], *args: Any, **kwargs: Any) -> Self: 

153 data = self._data._unary_op( # pyright: ignore[reportPrivateUsage] 

154 f, *args, **kwargs 

155 ) 

156 return self.__class__.from_xarray(data) 

157 

158 @classmethod 

159 def from_xarray(cls, data_array: xr.DataArray) -> Self: 

160 """create a `Tensor` from an xarray data array 

161 

162 note for internal use: this factory method is round-trip save 

163 for any `Tensor`'s `data` property (an xarray.DataArray). 

164 """ 

165 return cls( 

166 array=data_array.data, dims=tuple(AxisId(d) for d in data_array.dims) 

167 ) 

168 

169 @classmethod 

170 def from_numpy( 

171 cls, 

172 array: NDArray[Any], 

173 *, 

174 dims: Optional[Union[AxisLike, Sequence[AxisLike]]], 

175 ) -> Tensor: 

176 """create a `Tensor` from a numpy array 

177 

178 Args: 

179 array: the nd numpy array 

180 axes: A description of the array's axes, 

181 if None axes are guessed (which might fail and raise a ValueError.) 

182 

183 Raises: 

184 ValueError: if `axes` is None and axes guessing fails. 

185 """ 

186 

187 if dims is None: 

188 return cls._interprete_array_wo_known_axes(array) 

189 elif isinstance(dims, (str, Axis, v0_5.AxisBase)): 

190 dims = [dims] 

191 

192 axis_infos = [AxisInfo.create(a) for a in dims] 

193 original_shape = tuple(array.shape) 

194 

195 successful_view = _get_array_view(array, axis_infos) 

196 if successful_view is None: 

197 raise ValueError( 

198 f"Array shape {original_shape} does not map to axes {dims}" 

199 ) 

200 

201 return Tensor(successful_view, dims=tuple(a.id for a in axis_infos)) 

202 

203 @property 

204 def data(self): 

205 return self._data 

206 

207 @property 

208 def dims(self): # TODO: rename to `axes`? 

209 """Tuple of dimension names associated with this tensor.""" 

210 return cast(Tuple[AxisId, ...], self._data.dims) 

211 

212 @property 

213 def dtype(self) -> DTypeStr: 

214 dt = str(self.data.dtype) # pyright: ignore[reportUnknownArgumentType] 

215 assert dt in get_args(DTypeStr) 

216 return dt # pyright: ignore[reportReturnType] 

217 

218 @property 

219 def ndim(self): 

220 """Number of tensor dimensions.""" 

221 return self._data.ndim 

222 

223 @property 

224 def shape(self): 

225 """Tuple of tensor axes lengths""" 

226 return self._data.shape 

227 

228 @property 

229 def shape_tuple(self): 

230 """Tuple of tensor axes lengths""" 

231 return self._data.shape 

232 

233 @property 

234 def size(self): 

235 """Number of elements in the tensor. 

236 

237 Equal to math.prod(tensor.shape), i.e., the product of the tensors’ dimensions. 

238 """ 

239 return self._data.size 

240 

241 @property 

242 def sizes(self): 

243 """Ordered, immutable mapping from axis ids to axis lengths.""" 

244 return cast(Mapping[AxisId, int], self.data.sizes) 

245 

246 @property 

247 def tagged_shape(self): 

248 """(alias for `sizes`) Ordered, immutable mapping from axis ids to lengths.""" 

249 return self.sizes 

250 

251 def argmax(self) -> Mapping[AxisId, int]: 

252 ret = self._data.argmax(...) 

253 assert isinstance(ret, dict) 

254 return {cast(AxisId, k): cast(int, v.item()) for k, v in ret.items()} 

255 

256 def astype(self, dtype: DTypeStr, *, copy: bool = False): 

257 """Return tensor cast to `dtype` 

258 

259 note: if dtype is already satisfied copy if `copy`""" 

260 return self.__class__.from_xarray(self._data.astype(dtype, copy=copy)) 

261 

262 def clip(self, min: Optional[float] = None, max: Optional[float] = None): 

263 """Return a tensor whose values are limited to [min, max]. 

264 At least one of max or min must be given.""" 

265 return self.__class__.from_xarray(self._data.clip(min, max)) 

266 

267 def crop_to( 

268 self, 

269 sizes: PerAxis[int], 

270 crop_where: Union[ 

271 CropWhere, 

272 PerAxis[CropWhere], 

273 ] = "left_and_right", 

274 ) -> Self: 

275 """crop to match `sizes`""" 

276 if isinstance(crop_where, str): 

277 crop_axis_where: PerAxis[CropWhere] = {a: crop_where for a in self.dims} 

278 else: 

279 crop_axis_where = crop_where 

280 

281 slices: Dict[AxisId, SliceInfo] = {} 

282 

283 for a, s_is in self.sizes.items(): 

284 if a not in sizes or sizes[a] == s_is: 

285 pass 

286 elif sizes[a] > s_is: 

287 logger.warning( 

288 "Cannot crop axis {} of size {} to larger size {}", 

289 a, 

290 s_is, 

291 sizes[a], 

292 ) 

293 elif a not in crop_axis_where: 

294 raise ValueError( 

295 f"Don't know where to crop axis {a}, `crop_where`={crop_where}" 

296 ) 

297 else: 

298 crop_this_axis_where = crop_axis_where[a] 

299 if crop_this_axis_where == "left": 

300 slices[a] = SliceInfo(s_is - sizes[a], s_is) 

301 elif crop_this_axis_where == "right": 

302 slices[a] = SliceInfo(0, sizes[a]) 

303 elif crop_this_axis_where == "left_and_right": 

304 slices[a] = SliceInfo( 

305 start := (s_is - sizes[a]) // 2, sizes[a] + start 

306 ) 

307 else: 

308 assert_never(crop_this_axis_where) 

309 

310 return self[slices] 

311 

312 def expand_dims(self, dims: Union[Sequence[AxisId], PerAxis[int]]) -> Self: 

313 return self.__class__.from_xarray(self._data.expand_dims(dims=dims)) 

314 

315 def item( 

316 self, 

317 key: Union[ 

318 None, SliceInfo, slice, int, PerAxis[Union[SliceInfo, slice, int]] 

319 ] = None, 

320 ): 

321 """Copy a tensor element to a standard Python scalar and return it.""" 

322 if key is None: 

323 ret = self._data.item() 

324 else: 

325 ret = self[key]._data.item() 

326 

327 assert isinstance(ret, (bool, float, int)) 

328 return ret 

329 

330 def mean(self, dim: Optional[Union[AxisId, Sequence[AxisId]]] = None) -> Self: 

331 return self.__class__.from_xarray(self._data.mean(dim=dim)) 

332 

333 def pad( 

334 self, 

335 pad_width: PerAxis[PadWidthLike], 

336 mode: PadMode = "symmetric", 

337 ) -> Self: 

338 pad_width = {a: PadWidth.create(p) for a, p in pad_width.items()} 

339 return self.__class__.from_xarray( 

340 self._data.pad(pad_width=pad_width, mode=mode) 

341 ) 

342 

343 def pad_to( 

344 self, 

345 sizes: PerAxis[int], 

346 pad_where: Union[PadWhere, PerAxis[PadWhere]] = "left_and_right", 

347 mode: PadMode = "symmetric", 

348 ) -> Self: 

349 """pad `tensor` to match `sizes`""" 

350 if isinstance(pad_where, str): 

351 pad_axis_where: PerAxis[PadWhere] = {a: pad_where for a in self.dims} 

352 else: 

353 pad_axis_where = pad_where 

354 

355 pad_width: Dict[AxisId, PadWidth] = {} 

356 for a, s_is in self.sizes.items(): 

357 if a not in sizes or sizes[a] == s_is: 

358 pad_width[a] = PadWidth(0, 0) 

359 elif s_is > sizes[a]: 

360 pad_width[a] = PadWidth(0, 0) 

361 logger.warning( 

362 "Cannot pad axis {} of size {} to smaller size {}", 

363 a, 

364 s_is, 

365 sizes[a], 

366 ) 

367 elif a not in pad_axis_where: 

368 raise ValueError( 

369 f"Don't know where to pad axis {a}, `pad_where`={pad_where}" 

370 ) 

371 else: 

372 pad_this_axis_where = pad_axis_where[a] 

373 d = sizes[a] - s_is 

374 if pad_this_axis_where == "left": 

375 pad_width[a] = PadWidth(d, 0) 

376 elif pad_this_axis_where == "right": 

377 pad_width[a] = PadWidth(0, d) 

378 elif pad_this_axis_where == "left_and_right": 

379 pad_width[a] = PadWidth(left := d // 2, d - left) 

380 else: 

381 assert_never(pad_this_axis_where) 

382 

383 return self.pad(pad_width, mode) 

384 

385 def quantile( 

386 self, 

387 q: Union[float, Sequence[float]], 

388 dim: Optional[Union[AxisId, Sequence[AxisId]]] = None, 

389 ) -> Self: 

390 assert ( 

391 isinstance(q, (float, int)) 

392 and q >= 0.0 

393 or not isinstance(q, (float, int)) 

394 and all(qq >= 0.0 for qq in q) 

395 ) 

396 assert ( 

397 isinstance(q, (float, int)) 

398 and q <= 1.0 

399 or not isinstance(q, (float, int)) 

400 and all(qq <= 1.0 for qq in q) 

401 ) 

402 assert dim is None or ( 

403 (quantile_dim := AxisId("quantile")) != dim and quantile_dim not in set(dim) 

404 ) 

405 return self.__class__.from_xarray(self._data.quantile(q, dim=dim)) 

406 

407 def resize_to( 

408 self, 

409 sizes: PerAxis[int], 

410 *, 

411 pad_where: Union[ 

412 PadWhere, 

413 PerAxis[PadWhere], 

414 ] = "left_and_right", 

415 crop_where: Union[ 

416 CropWhere, 

417 PerAxis[CropWhere], 

418 ] = "left_and_right", 

419 pad_mode: PadMode = "symmetric", 

420 ): 

421 """return cropped/padded tensor with `sizes`""" 

422 crop_to_sizes: Dict[AxisId, int] = {} 

423 pad_to_sizes: Dict[AxisId, int] = {} 

424 new_axes = dict(sizes) 

425 for a, s_is in self.sizes.items(): 

426 a = AxisId(str(a)) 

427 _ = new_axes.pop(a, None) 

428 if a not in sizes or sizes[a] == s_is: 

429 pass 

430 elif s_is > sizes[a]: 

431 crop_to_sizes[a] = sizes[a] 

432 else: 

433 pad_to_sizes[a] = sizes[a] 

434 

435 tensor = self 

436 if crop_to_sizes: 

437 tensor = tensor.crop_to(crop_to_sizes, crop_where=crop_where) 

438 

439 if pad_to_sizes: 

440 tensor = tensor.pad_to(pad_to_sizes, pad_where=pad_where, mode=pad_mode) 

441 

442 if new_axes: 

443 tensor = tensor.expand_dims(new_axes) 

444 

445 return tensor 

446 

447 def std(self, dim: Optional[Union[AxisId, Sequence[AxisId]]] = None) -> Self: 

448 return self.__class__.from_xarray(self._data.std(dim=dim)) 

449 

450 def sum(self, dim: Optional[Union[AxisId, Sequence[AxisId]]] = None) -> Self: 

451 """Reduce this Tensor's data by applying sum along some dimension(s).""" 

452 return self.__class__.from_xarray(self._data.sum(dim=dim)) 

453 

454 def transpose( 

455 self, 

456 axes: Sequence[AxisId], 

457 ) -> Self: 

458 """return a transposed tensor 

459 

460 Args: 

461 axes: the desired tensor axes 

462 """ 

463 # expand missing tensor axes 

464 missing_axes = tuple(a for a in axes if a not in self.dims) 

465 array = self._data 

466 if missing_axes: 

467 array = array.expand_dims(missing_axes) 

468 

469 # transpose to the correct axis order 

470 return self.__class__.from_xarray(array.transpose(*axes)) 

471 

472 def var(self, dim: Optional[Union[AxisId, Sequence[AxisId]]] = None) -> Self: 

473 return self.__class__.from_xarray(self._data.var(dim=dim)) 

474 

475 @classmethod 

476 def _interprete_array_wo_known_axes(cls, array: NDArray[Any]): 

477 ndim = array.ndim 

478 if ndim == 2: 

479 current_axes = ( 

480 v0_5.SpaceInputAxis(id=AxisId("y"), size=array.shape[0]), 

481 v0_5.SpaceInputAxis(id=AxisId("x"), size=array.shape[1]), 

482 ) 

483 elif ndim == 3 and any(s <= 3 for s in array.shape): 

484 current_axes = ( 

485 v0_5.ChannelAxis( 

486 channel_names=[ 

487 v0_5.Identifier(f"channel{i}") for i in range(array.shape[0]) 

488 ] 

489 ), 

490 v0_5.SpaceInputAxis(id=AxisId("y"), size=array.shape[1]), 

491 v0_5.SpaceInputAxis(id=AxisId("x"), size=array.shape[2]), 

492 ) 

493 elif ndim == 3: 

494 current_axes = ( 

495 v0_5.SpaceInputAxis(id=AxisId("z"), size=array.shape[0]), 

496 v0_5.SpaceInputAxis(id=AxisId("y"), size=array.shape[1]), 

497 v0_5.SpaceInputAxis(id=AxisId("x"), size=array.shape[2]), 

498 ) 

499 elif ndim == 4: 

500 current_axes = ( 

501 v0_5.ChannelAxis( 

502 channel_names=[ 

503 v0_5.Identifier(f"channel{i}") for i in range(array.shape[0]) 

504 ] 

505 ), 

506 v0_5.SpaceInputAxis(id=AxisId("z"), size=array.shape[1]), 

507 v0_5.SpaceInputAxis(id=AxisId("y"), size=array.shape[2]), 

508 v0_5.SpaceInputAxis(id=AxisId("x"), size=array.shape[3]), 

509 ) 

510 elif ndim == 5: 

511 current_axes = ( 

512 v0_5.BatchAxis(), 

513 v0_5.ChannelAxis( 

514 channel_names=[ 

515 v0_5.Identifier(f"channel{i}") for i in range(array.shape[1]) 

516 ] 

517 ), 

518 v0_5.SpaceInputAxis(id=AxisId("z"), size=array.shape[2]), 

519 v0_5.SpaceInputAxis(id=AxisId("y"), size=array.shape[3]), 

520 v0_5.SpaceInputAxis(id=AxisId("x"), size=array.shape[4]), 

521 ) 

522 else: 

523 raise ValueError(f"Could not guess an axis mapping for {array.shape}") 

524 

525 return cls(array, dims=tuple(a.id for a in current_axes)) 

526 

527 

528def _add_singletons(arr: NDArray[Any], axis_infos: Sequence[AxisInfo]): 

529 if len(arr.shape) > len(axis_infos): 

530 # remove singletons 

531 for i, s in enumerate(arr.shape): 

532 if s == 1: 

533 arr = np.take(arr, 0, axis=i) 

534 if len(arr.shape) == len(axis_infos): 

535 break 

536 

537 # add singletons if nececsary 

538 for i, a in enumerate(axis_infos): 

539 if len(arr.shape) >= len(axis_infos): 

540 break 

541 

542 if a.maybe_singleton: 

543 arr = np.expand_dims(arr, i) 

544 

545 return arr 

546 

547 

548def _get_array_view( 

549 original_array: NDArray[Any], axis_infos: Sequence[AxisInfo] 

550) -> Optional[NDArray[Any]]: 

551 perms = list(permutations(range(len(original_array.shape)))) 

552 perms.insert(1, perms.pop()) # try A and A.T first 

553 

554 for perm in perms: 

555 view = original_array.transpose(perm) 

556 view = _add_singletons(view, axis_infos) 

557 if len(view.shape) != len(axis_infos): 

558 return None 

559 

560 for s, a in zip(view.shape, axis_infos): 

561 if s == 1 and not a.maybe_singleton: 

562 break 

563 else: 

564 return view 

565 

566 return None