v0_4
¤
| CLASS | DESCRIPTION |
|---|---|
AfterValidator |
|
AttachmentsDescr |
|
Author |
|
BadgeDescr |
A custom badge |
BinarizeDescr |
BinarizeDescr the tensor with a fixed |
BinarizeKwargs |
key word arguments for |
CallableFromDepencency |
|
CallableFromDepencencyNode |
|
CallableFromFile |
|
CallableFromFileNode |
|
CiteEntry |
|
ClipDescr |
Clip tensor values to a range. |
ClipKwargs |
key word arguments for |
DatasetDescr |
A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage |
Datetime |
Timestamp in ISO 8601 format |
Dependencies |
|
DependenciesNode |
|
Doi |
A digital object identifier, see https://www.doi.org/ |
FileDescr |
A file description |
GenericModelDescrBase |
Base for all resource descriptions including of model descriptions |
HttpUrl |
A URL with the HTTP or HTTPS scheme. |
Identifier |
|
ImplicitOutputShape |
Output tensor shape depending on an input tensor shape. |
InputTensorDescr |
|
KerasHdf5WeightsDescr |
|
KwargsNode |
|
LicenseId |
|
LinkedDataset |
Reference to a bioimage.io dataset. |
LinkedModel |
Reference to a bioimage.io model. |
LinkedResource |
Reference to a bioimage.io resource |
LowerCaseIdentifier |
|
Maintainer |
|
ModelDescr |
Specification of the fields used in a bioimage.io-compliant RDF that describes AI models with pretrained weights. |
ModelId |
|
Node |
|
NodeWithExplicitlySetFields |
|
OnnxWeightsDescr |
|
OrcidId |
An ORCID identifier, see https://orcid.org/ |
OutputTensorDescr |
|
ParameterizedInputShape |
A sequence of valid shapes given by |
ProcessingDescrBase |
processing base class |
ProcessingKwargs |
base class for pre-/postprocessing key word arguments |
PytorchStateDictWeightsDescr |
|
RelativeFilePath |
A path relative to the |
ResourceId |
|
RestrictCharacters |
|
RunMode |
|
ScaleLinearDescr |
Fixed linear scaling. |
ScaleLinearKwargs |
key word arguments for |
ScaleMeanVarianceDescr |
Scale the tensor s.t. its mean and variance match a reference tensor. |
ScaleMeanVarianceKwargs |
key word arguments for |
ScaleRangeDescr |
Scale with percentiles. |
ScaleRangeKwargs |
key word arguments for |
Sha256 |
A SHA-256 hash value |
SigmoidDescr |
The logistic sigmoid funciton, a.k.a. expit function. |
TensorDescrBase |
|
TensorName |
|
TensorflowJsWeightsDescr |
|
TensorflowSavedModelBundleWeightsDescr |
|
TorchscriptWeightsDescr |
|
Uploader |
|
ValidatedStringWithInnerNode |
A validated string with further validation and serialization using a |
Version |
wraps a packaging.version.Version instance for validation in pydantic models |
WeightsDescr |
|
WeightsEntryDescrBase |
|
WithSuffix |
|
ZeroMeanUnitVarianceDescr |
Subtract mean and divide by variance. |
ZeroMeanUnitVarianceKwargs |
key word arguments for |
| FUNCTION | DESCRIPTION |
|---|---|
convert_from_older_format |
|
issue_warning |
|
load_array |
|
package_weights |
|
validate_unique_entries |
|
warn |
treat a type or its annotation metadata as a warning condition |
| ATTRIBUTE | DESCRIPTION |
|---|---|
AxesInCZYX |
|
AxesStr |
|
BioimageioYamlContent |
|
CustomCallable |
|
FileSource_ |
A file source that is included when packaging the resource.
|
KnownRunMode |
|
NotEmpty |
|
PostprocessingDescr |
|
PostprocessingName |
|
PreprocessingDescr |
|
PreprocessingName |
|
SHA256_HINT |
|
VALID_COVER_IMAGE_EXTENSIONS |
|
WeightsFormat |
|
include_in_package |
DEPRECATED serializer for
|
packaging_context_var |
TYPE:
|
BioimageioYamlContent
module-attribute
¤
BioimageioYamlContent = Dict[str, YamlValue]
CustomCallable
module-attribute
¤
CustomCallable = Union[
CallableFromFile, CallableFromDepencency
]
FileSource_
module-attribute
¤
FileSource_ = FileSource
A file source that is included when packaging the resource.
NotEmpty
module-attribute
¤
NotEmpty = S
PostprocessingDescr
module-attribute
¤
PostprocessingDescr = Union[
BinarizeDescr,
ClipDescr,
ScaleLinearDescr,
SigmoidDescr,
ZeroMeanUnitVarianceDescr,
ScaleRangeDescr,
ScaleMeanVarianceDescr,
]
PostprocessingName
module-attribute
¤
PostprocessingName = Literal[
"binarize",
"clip",
"scale_linear",
"sigmoid",
"zero_mean_unit_variance",
"scale_range",
"scale_mean_variance",
]
PreprocessingDescr
module-attribute
¤
PreprocessingDescr = Union[
BinarizeDescr,
ClipDescr,
ScaleLinearDescr,
SigmoidDescr,
ZeroMeanUnitVarianceDescr,
ScaleRangeDescr,
]
PreprocessingName
module-attribute
¤
PreprocessingName = Literal[
"binarize",
"clip",
"scale_linear",
"sigmoid",
"zero_mean_unit_variance",
"scale_range",
]
SHA256_HINT
module-attribute
¤
SHA256_HINT = "You can drag and drop your file to this\n[online tool](http://emn178.github.io/online-tools/sha256_checksum.html) to generate a SHA256 in your browser.\nOr you can generate a SHA256 checksum with Python's `hashlib`,\n[here is a codesnippet](https://gist.github.com/FynnBe/e64460463df89439cff218bbf59c1100)."
VALID_COVER_IMAGE_EXTENSIONS
module-attribute
¤
VALID_COVER_IMAGE_EXTENSIONS = (
".gif",
".jpeg",
".jpg",
".png",
".svg",
".tif",
".tiff",
)
WeightsFormat
module-attribute
¤
WeightsFormat = Literal[
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript",
]
include_in_package
module-attribute
¤
include_in_package = PrettyPlainSerializer(
_package_serializer, when_used="unless-none"
)
DEPRECATED serializer for source fields without corresponding sha256 field.
packaging_context_var
module-attribute
¤
packaging_context_var: ContextVar[
Optional[PackagingContext]
] = ContextVar("packaging_context_var", default=None)
AfterValidator
dataclass
¤
AfterValidator()
Bases: functional_validators.AfterValidator
flowchart TD
bioimageio.spec.model.v0_4.AfterValidator[AfterValidator]
click bioimageio.spec.model.v0_4.AfterValidator href "" "bioimageio.spec.model.v0_4.AfterValidator"
| METHOD | DESCRIPTION |
|---|---|
__str__ |
|
__str__
¤
__str__()
Source code in src/bioimageio/spec/_internal/validator_annotations.py
15 16 | |
AttachmentsDescr
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"$defs": {
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
}
Config:
default:{None: Node.model_config, 'extra': 'allow'}
Fields:
-
files(List[FileSource_])
model_config
class-attribute
instance-attribute
¤
model_config = {None: Node.model_config, 'extra': 'allow'}
update pydantic model config to allow additional unknown keys
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
Author
pydantic-model
¤
Bases: _Person
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
}
Fields:
-
affiliation(Optional[str]) -
email(Optional[EmailStr]) -
orcid(Optional[OrcidId]) -
name(str) -
github_user(Optional[str])
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
BadgeDescr
pydantic-model
¤
Bases: Node
A custom badge
Show JSON schema:
{
"$defs": {
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"description": "A custom badge",
"properties": {
"label": {
"description": "badge label to display on hover",
"examples": [
"Open in Colab"
],
"title": "Label",
"type": "string"
},
"icon": {
"anyOf": [
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "badge icon (included in bioimage.io package if not a URL)",
"examples": [
"https://colab.research.google.com/assets/colab-badge.svg"
],
"title": "Icon"
},
"url": {
"description": "target URL",
"examples": [
"https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-net_2D_ZeroCostDL4Mic.ipynb"
],
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
}
},
"required": [
"label",
"url"
],
"title": "generic.v0_2.BadgeDescr",
"type": "object"
}
Fields:
-
label(str) -
icon(Optional[Union[Union[FilePath, RelativeFilePath], Union[HttpUrl, pydantic.HttpUrl]]]) -
url(HttpUrl)
icon
pydantic-field
¤
icon: Optional[
Union[
Union[FilePath, RelativeFilePath],
Union[HttpUrl, pydantic.HttpUrl],
]
] = None
badge icon (included in bioimage.io package if not a URL)
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
BinarizeDescr
pydantic-model
¤
Bases: ProcessingDescrBase
BinarizeDescr the tensor with a fixed BinarizeKwargs.threshold.
Values above the threshold will be set to one, values below the threshold to zero.
Show JSON schema:
{
"$defs": {
"BinarizeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `BinarizeDescr`",
"properties": {
"threshold": {
"description": "The fixed threshold",
"title": "Threshold",
"type": "number"
}
},
"required": [
"threshold"
],
"title": "model.v0_4.BinarizeKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "BinarizeDescr the tensor with a fixed `BinarizeKwargs.threshold`.\nValues above the threshold will be set to one, values below the threshold to zero.",
"properties": {
"name": {
"const": "binarize",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/BinarizeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.BinarizeDescr",
"type": "object"
}
Fields:
-
name(Literal['binarize']) -
kwargs(BinarizeKwargs)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
BinarizeKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for BinarizeDescr
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `BinarizeDescr`",
"properties": {
"threshold": {
"description": "The fixed threshold",
"title": "Threshold",
"type": "number"
}
},
"required": [
"threshold"
],
"title": "model.v0_4.BinarizeKwargs",
"type": "object"
}
Fields:
-
threshold(float)
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
CallableFromDepencency
¤
Bases: ValidatedStringWithInnerNode[CallableFromDepencencyNode]
flowchart TD
bioimageio.spec.model.v0_4.CallableFromDepencency[CallableFromDepencency]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode[ValidatedStringWithInnerNode]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode --> bioimageio.spec.model.v0_4.CallableFromDepencency
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode
click bioimageio.spec.model.v0_4.CallableFromDepencency href "" "bioimageio.spec.model.v0_4.CallableFromDepencency"
click bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode href "" "bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
callable_name |
The callable Python identifier implemented in module module_name.
|
module_name |
The Python module that implements callable_name.
|
root_model |
TYPE:
|
callable_name
property
¤
callable_name
The callable Python identifier implemented in module module_name.
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
CallableFromDepencencyNode
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"module_name": {
"description": "The Python module that implements **callable_name**.",
"title": "Module Name",
"type": "string"
},
"callable_name": {
"description": "The callable Python identifier implemented in module **module_name**.",
"minLength": 1,
"title": "Identifier",
"type": "string"
}
},
"required": [
"module_name",
"callable_name"
],
"title": "model.v0_4.CallableFromDepencencyNode",
"type": "object"
}
Fields:
-
module_name(str) -
callable_name(Identifier)
Validators:
-
_check_submodules→module_name
callable_name
pydantic-field
¤
callable_name: Identifier
The callable Python identifier implemented in module module_name.
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
CallableFromFile
¤
Bases: ValidatedStringWithInnerNode[CallableFromFileNode]
flowchart TD
bioimageio.spec.model.v0_4.CallableFromFile[CallableFromFile]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode[ValidatedStringWithInnerNode]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode --> bioimageio.spec.model.v0_4.CallableFromFile
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode
click bioimageio.spec.model.v0_4.CallableFromFile href "" "bioimageio.spec.model.v0_4.CallableFromFile"
click bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode href "" "bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
callable_name |
The callable Python identifier implemented in source_file.
|
root_model |
TYPE:
|
source_file |
The Python source file that implements callable_name.
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
CallableFromFileNode
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"$defs": {
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"properties": {
"source_file": {
"anyOf": [
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
}
],
"description": "The Python source file that implements **callable_name**.",
"title": "Source File"
},
"callable_name": {
"description": "The callable Python identifier implemented in **source_file**.",
"minLength": 1,
"title": "Identifier",
"type": "string"
}
},
"required": [
"source_file",
"callable_name"
],
"title": "model.v0_4.CallableFromFileNode",
"type": "object"
}
Fields:
-
source_file(Union[RelativeFilePath, HttpUrl]) -
callable_name(Identifier)
callable_name
pydantic-field
¤
callable_name: Identifier
The callable Python identifier implemented in source_file.
source_file
pydantic-field
¤
source_file: Union[RelativeFilePath, HttpUrl]
The Python source file that implements callable_name.
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
CiteEntry
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"text": {
"description": "free text description",
"title": "Text",
"type": "string"
},
"doi": {
"anyOf": [
{
"description": "A digital object identifier, see https://www.doi.org/",
"pattern": "^10\\.[0-9]{4}.+$",
"title": "Doi",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A digital object identifier (DOI) is the prefered citation reference.\nSee https://www.doi.org/ for details. (alternatively specify `url`)",
"title": "Doi"
},
"url": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to cite (preferably specify a `doi` instead)",
"title": "Url"
}
},
"required": [
"text"
],
"title": "generic.v0_2.CiteEntry",
"type": "object"
}
Fields:
Validators:
-
accept_prefixed_doi→doi -
_check_doi_or_url
doi
pydantic-field
¤
doi: Optional[Doi] = None
A digital object identifier (DOI) is the prefered citation reference.
See https://www.doi.org/ for details. (alternatively specify url)
accept_prefixed_doi
pydantic-validator
¤
accept_prefixed_doi(doi: Any) -> Any
Source code in src/bioimageio/spec/generic/v0_2.py
184 185 186 187 188 189 190 191 192 193 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ClipDescr
pydantic-model
¤
Bases: ProcessingDescrBase
Clip tensor values to a range.
Set tensor values below ClipKwargs.min to ClipKwargs.min
and above ClipKwargs.max to ClipKwargs.max.
Show JSON schema:
{
"$defs": {
"ClipKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ClipDescr`",
"properties": {
"min": {
"description": "minimum value for clipping",
"title": "Min",
"type": "number"
},
"max": {
"description": "maximum value for clipping",
"title": "Max",
"type": "number"
}
},
"required": [
"min",
"max"
],
"title": "model.v0_4.ClipKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Clip tensor values to a range.\n\nSet tensor values below `ClipKwargs.min` to `ClipKwargs.min`\nand above `ClipKwargs.max` to `ClipKwargs.max`.",
"properties": {
"name": {
"const": "clip",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ClipKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ClipDescr",
"type": "object"
}
Fields:
-
name(Literal['clip']) -
kwargs(ClipKwargs)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ClipKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for ClipDescr
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `ClipDescr`",
"properties": {
"min": {
"description": "minimum value for clipping",
"title": "Min",
"type": "number"
},
"max": {
"description": "maximum value for clipping",
"title": "Max",
"type": "number"
}
},
"required": [
"min",
"max"
],
"title": "model.v0_4.ClipKwargs",
"type": "object"
}
Fields:
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
DatasetDescr
pydantic-model
¤
Bases: GenericDescrBase
A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage processing.
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"BadgeDescr": {
"additionalProperties": false,
"description": "A custom badge",
"properties": {
"label": {
"description": "badge label to display on hover",
"examples": [
"Open in Colab"
],
"title": "Label",
"type": "string"
},
"icon": {
"anyOf": [
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "badge icon (included in bioimage.io package if not a URL)",
"examples": [
"https://colab.research.google.com/assets/colab-badge.svg"
],
"title": "Icon"
},
"url": {
"description": "target URL",
"examples": [
"https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-net_2D_ZeroCostDL4Mic.ipynb"
],
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
}
},
"required": [
"label",
"url"
],
"title": "generic.v0_2.BadgeDescr",
"type": "object"
},
"CiteEntry": {
"additionalProperties": false,
"properties": {
"text": {
"description": "free text description",
"title": "Text",
"type": "string"
},
"doi": {
"anyOf": [
{
"description": "A digital object identifier, see https://www.doi.org/",
"pattern": "^10\\.[0-9]{4}.+$",
"title": "Doi",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A digital object identifier (DOI) is the prefered citation reference.\nSee https://www.doi.org/ for details. (alternatively specify `url`)",
"title": "Doi"
},
"url": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to cite (preferably specify a `doi` instead)",
"title": "Url"
}
},
"required": [
"text"
],
"title": "generic.v0_2.CiteEntry",
"type": "object"
},
"Maintainer": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Name"
},
"github_user": {
"title": "Github User",
"type": "string"
}
},
"required": [
"github_user"
],
"title": "generic.v0_2.Maintainer",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Uploader": {
"additionalProperties": false,
"properties": {
"email": {
"description": "Email",
"format": "email",
"title": "Email",
"type": "string"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "name",
"title": "Name"
}
},
"required": [
"email"
],
"title": "generic.v0_2.Uploader",
"type": "object"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
},
"YamlValue": {
"anyOf": [
{
"type": "boolean"
},
{
"format": "date",
"type": "string"
},
{
"format": "date-time",
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "string"
},
{
"items": {
"$ref": "#/$defs/YamlValue"
},
"type": "array"
},
{
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"type": "object"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"description": "A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage\nprocessing.",
"properties": {
"name": {
"description": "A human-friendly name of the resource description",
"minLength": 1,
"title": "Name",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"covers": {
"description": "Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.\nThe supported image formats are: ('.gif', '.jpeg', '.jpg', '.png', '.svg', '.tif', '.tiff')",
"examples": [
[
"cover.png"
]
],
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Covers",
"type": "array"
},
"id_emoji": {
"anyOf": [
{
"examples": [
"\ud83e\udd88",
"\ud83e\udda5"
],
"maxLength": 1,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "UTF-8 emoji for display alongside the `id`.",
"title": "Id Emoji"
},
"authors": {
"description": "The authors are the creators of the RDF and the primary points of contact.",
"items": {
"$ref": "#/$defs/Author"
},
"title": "Authors",
"type": "array"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "file and other attachments"
},
"cite": {
"description": "citations",
"items": {
"$ref": "#/$defs/CiteEntry"
},
"title": "Cite",
"type": "array"
},
"config": {
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"description": "A field for custom configuration that can contain any keys not present in the RDF spec.\nThis means you should not store, for example, a github repo URL in `config` since we already have the\n`git_repo` field defined in the spec.\nKeys in `config` may be very specific to a tool or consumer software. To avoid conflicting definitions,\nit is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,\nfor example:\n```yaml\nconfig:\n bioimageio: # here is the domain name\n my_custom_key: 3837283\n another_key:\n nested: value\n imagej: # config specific to ImageJ\n macro_dir: path/to/macro/file\n```\nIf possible, please use [`snake_case`](https://en.wikipedia.org/wiki/Snake_case) for keys in `config`.\nYou may want to list linked files additionally under `attachments` to include them when packaging a resource\n(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains\nan altered rdf.yaml file with local references to the downloaded files)",
"examples": [
{
"bioimageio": {
"another_key": {
"nested": "value"
},
"my_custom_key": 3837283
},
"imagej": {
"macro_dir": "path/to/macro/file"
}
}
],
"title": "Config",
"type": "object"
},
"download_url": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to download the resource from (deprecated)",
"title": "Download Url"
},
"git_repo": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A URL to the Git repository where the resource is being developed.",
"examples": [
"https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_descriptions/models/unet2d_nuclei_broad"
],
"title": "Git Repo"
},
"icon": {
"anyOf": [
{
"maxLength": 2,
"minLength": 1,
"type": "string"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An icon for illustration",
"title": "Icon"
},
"links": {
"description": "IDs of other bioimage.io resources",
"examples": [
[
"ilastik/ilastik",
"deepimagej/deepimagej",
"zero/notebook_u-net_3d_zerocostdl4mic"
]
],
"items": {
"type": "string"
},
"title": "Links",
"type": "array"
},
"uploader": {
"anyOf": [
{
"$ref": "#/$defs/Uploader"
},
{
"type": "null"
}
],
"default": null,
"description": "The person who uploaded the model (e.g. to bioimage.io)"
},
"maintainers": {
"description": "Maintainers of this resource.\nIf not specified `authors` are maintainers and at least some of them should specify their `github_user` name",
"items": {
"$ref": "#/$defs/Maintainer"
},
"title": "Maintainers",
"type": "array"
},
"rdf_source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from.\nDo not set this field in a YAML file.",
"title": "Rdf Source"
},
"tags": {
"description": "Associated tags",
"examples": [
[
"unet2d",
"pytorch",
"nucleus",
"segmentation",
"dsb2018"
]
],
"items": {
"type": "string"
},
"title": "Tags",
"type": "array"
},
"version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "The version of the resource following SemVer 2.0."
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version)",
"title": "Version Number"
},
"format_version": {
"const": "0.2.4",
"description": "The format version of this resource specification\n(not the `version` of the resource description)\nWhen creating a new resource always use the latest micro/patch version described here.\nThe `format_version` is important for any consumer software to understand how to parse the fields.",
"title": "Format Version",
"type": "string"
},
"badges": {
"description": "badges associated with this resource",
"items": {
"$ref": "#/$defs/BadgeDescr"
},
"title": "Badges",
"type": "array"
},
"documentation": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL or relative path to a markdown file with additional documentation.\nThe recommended documentation file name is `README.md`. An `.md` suffix is mandatory.",
"examples": [
"https://raw.githubusercontent.com/bioimage-io/spec-bioimage-io/main/example_descriptions/models/unet2d_nuclei_broad/README.md",
"README.md"
],
"title": "Documentation"
},
"license": {
"anyOf": [
{
"enum": [
"0BSD",
"AAL",
"Abstyles",
"AdaCore-doc",
"Adobe-2006",
"Adobe-Display-PostScript",
"Adobe-Glyph",
"Adobe-Utopia",
"ADSL",
"AFL-1.1",
"AFL-1.2",
"AFL-2.0",
"AFL-2.1",
"AFL-3.0",
"Afmparse",
"AGPL-1.0-only",
"AGPL-1.0-or-later",
"AGPL-3.0-only",
"AGPL-3.0-or-later",
"Aladdin",
"AMDPLPA",
"AML",
"AML-glslang",
"AMPAS",
"ANTLR-PD",
"ANTLR-PD-fallback",
"Apache-1.0",
"Apache-1.1",
"Apache-2.0",
"APAFML",
"APL-1.0",
"App-s2p",
"APSL-1.0",
"APSL-1.1",
"APSL-1.2",
"APSL-2.0",
"Arphic-1999",
"Artistic-1.0",
"Artistic-1.0-cl8",
"Artistic-1.0-Perl",
"Artistic-2.0",
"ASWF-Digital-Assets-1.0",
"ASWF-Digital-Assets-1.1",
"Baekmuk",
"Bahyph",
"Barr",
"bcrypt-Solar-Designer",
"Beerware",
"Bitstream-Charter",
"Bitstream-Vera",
"BitTorrent-1.0",
"BitTorrent-1.1",
"blessing",
"BlueOak-1.0.0",
"Boehm-GC",
"Borceux",
"Brian-Gladman-2-Clause",
"Brian-Gladman-3-Clause",
"BSD-1-Clause",
"BSD-2-Clause",
"BSD-2-Clause-Darwin",
"BSD-2-Clause-Patent",
"BSD-2-Clause-Views",
"BSD-3-Clause",
"BSD-3-Clause-acpica",
"BSD-3-Clause-Attribution",
"BSD-3-Clause-Clear",
"BSD-3-Clause-flex",
"BSD-3-Clause-HP",
"BSD-3-Clause-LBNL",
"BSD-3-Clause-Modification",
"BSD-3-Clause-No-Military-License",
"BSD-3-Clause-No-Nuclear-License",
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause-No-Nuclear-Warranty",
"BSD-3-Clause-Open-MPI",
"BSD-3-Clause-Sun",
"BSD-4-Clause",
"BSD-4-Clause-Shortened",
"BSD-4-Clause-UC",
"BSD-4.3RENO",
"BSD-4.3TAHOE",
"BSD-Advertising-Acknowledgement",
"BSD-Attribution-HPND-disclaimer",
"BSD-Inferno-Nettverk",
"BSD-Protection",
"BSD-Source-beginning-file",
"BSD-Source-Code",
"BSD-Systemics",
"BSD-Systemics-W3Works",
"BSL-1.0",
"BUSL-1.1",
"bzip2-1.0.6",
"C-UDA-1.0",
"CAL-1.0",
"CAL-1.0-Combined-Work-Exception",
"Caldera",
"Caldera-no-preamble",
"CATOSL-1.1",
"CC-BY-1.0",
"CC-BY-2.0",
"CC-BY-2.5",
"CC-BY-2.5-AU",
"CC-BY-3.0",
"CC-BY-3.0-AT",
"CC-BY-3.0-AU",
"CC-BY-3.0-DE",
"CC-BY-3.0-IGO",
"CC-BY-3.0-NL",
"CC-BY-3.0-US",
"CC-BY-4.0",
"CC-BY-NC-1.0",
"CC-BY-NC-2.0",
"CC-BY-NC-2.5",
"CC-BY-NC-3.0",
"CC-BY-NC-3.0-DE",
"CC-BY-NC-4.0",
"CC-BY-NC-ND-1.0",
"CC-BY-NC-ND-2.0",
"CC-BY-NC-ND-2.5",
"CC-BY-NC-ND-3.0",
"CC-BY-NC-ND-3.0-DE",
"CC-BY-NC-ND-3.0-IGO",
"CC-BY-NC-ND-4.0",
"CC-BY-NC-SA-1.0",
"CC-BY-NC-SA-2.0",
"CC-BY-NC-SA-2.0-DE",
"CC-BY-NC-SA-2.0-FR",
"CC-BY-NC-SA-2.0-UK",
"CC-BY-NC-SA-2.5",
"CC-BY-NC-SA-3.0",
"CC-BY-NC-SA-3.0-DE",
"CC-BY-NC-SA-3.0-IGO",
"CC-BY-NC-SA-4.0",
"CC-BY-ND-1.0",
"CC-BY-ND-2.0",
"CC-BY-ND-2.5",
"CC-BY-ND-3.0",
"CC-BY-ND-3.0-DE",
"CC-BY-ND-4.0",
"CC-BY-SA-1.0",
"CC-BY-SA-2.0",
"CC-BY-SA-2.0-UK",
"CC-BY-SA-2.1-JP",
"CC-BY-SA-2.5",
"CC-BY-SA-3.0",
"CC-BY-SA-3.0-AT",
"CC-BY-SA-3.0-DE",
"CC-BY-SA-3.0-IGO",
"CC-BY-SA-4.0",
"CC-PDDC",
"CC0-1.0",
"CDDL-1.0",
"CDDL-1.1",
"CDL-1.0",
"CDLA-Permissive-1.0",
"CDLA-Permissive-2.0",
"CDLA-Sharing-1.0",
"CECILL-1.0",
"CECILL-1.1",
"CECILL-2.0",
"CECILL-2.1",
"CECILL-B",
"CECILL-C",
"CERN-OHL-1.1",
"CERN-OHL-1.2",
"CERN-OHL-P-2.0",
"CERN-OHL-S-2.0",
"CERN-OHL-W-2.0",
"CFITSIO",
"check-cvs",
"checkmk",
"ClArtistic",
"Clips",
"CMU-Mach",
"CMU-Mach-nodoc",
"CNRI-Jython",
"CNRI-Python",
"CNRI-Python-GPL-Compatible",
"COIL-1.0",
"Community-Spec-1.0",
"Condor-1.1",
"copyleft-next-0.3.0",
"copyleft-next-0.3.1",
"Cornell-Lossless-JPEG",
"CPAL-1.0",
"CPL-1.0",
"CPOL-1.02",
"Cronyx",
"Crossword",
"CrystalStacker",
"CUA-OPL-1.0",
"Cube",
"curl",
"D-FSL-1.0",
"DEC-3-Clause",
"diffmark",
"DL-DE-BY-2.0",
"DL-DE-ZERO-2.0",
"DOC",
"Dotseqn",
"DRL-1.0",
"DRL-1.1",
"DSDP",
"dtoa",
"dvipdfm",
"ECL-1.0",
"ECL-2.0",
"EFL-1.0",
"EFL-2.0",
"eGenix",
"Elastic-2.0",
"Entessa",
"EPICS",
"EPL-1.0",
"EPL-2.0",
"ErlPL-1.1",
"etalab-2.0",
"EUDatagrid",
"EUPL-1.0",
"EUPL-1.1",
"EUPL-1.2",
"Eurosym",
"Fair",
"FBM",
"FDK-AAC",
"Ferguson-Twofish",
"Frameworx-1.0",
"FreeBSD-DOC",
"FreeImage",
"FSFAP",
"FSFAP-no-warranty-disclaimer",
"FSFUL",
"FSFULLR",
"FSFULLRWD",
"FTL",
"Furuseth",
"fwlw",
"GCR-docs",
"GD",
"GFDL-1.1-invariants-only",
"GFDL-1.1-invariants-or-later",
"GFDL-1.1-no-invariants-only",
"GFDL-1.1-no-invariants-or-later",
"GFDL-1.1-only",
"GFDL-1.1-or-later",
"GFDL-1.2-invariants-only",
"GFDL-1.2-invariants-or-later",
"GFDL-1.2-no-invariants-only",
"GFDL-1.2-no-invariants-or-later",
"GFDL-1.2-only",
"GFDL-1.2-or-later",
"GFDL-1.3-invariants-only",
"GFDL-1.3-invariants-or-later",
"GFDL-1.3-no-invariants-only",
"GFDL-1.3-no-invariants-or-later",
"GFDL-1.3-only",
"GFDL-1.3-or-later",
"Giftware",
"GL2PS",
"Glide",
"Glulxe",
"GLWTPL",
"gnuplot",
"GPL-1.0-only",
"GPL-1.0-or-later",
"GPL-2.0-only",
"GPL-2.0-or-later",
"GPL-3.0-only",
"GPL-3.0-or-later",
"Graphics-Gems",
"gSOAP-1.3b",
"gtkbook",
"HaskellReport",
"hdparm",
"Hippocratic-2.1",
"HP-1986",
"HP-1989",
"HPND",
"HPND-DEC",
"HPND-doc",
"HPND-doc-sell",
"HPND-export-US",
"HPND-export-US-modify",
"HPND-Fenneberg-Livingston",
"HPND-INRIA-IMAG",
"HPND-Kevlin-Henney",
"HPND-Markus-Kuhn",
"HPND-MIT-disclaimer",
"HPND-Pbmplus",
"HPND-sell-MIT-disclaimer-xserver",
"HPND-sell-regexpr",
"HPND-sell-variant",
"HPND-sell-variant-MIT-disclaimer",
"HPND-UC",
"HTMLTIDY",
"IBM-pibs",
"ICU",
"IEC-Code-Components-EULA",
"IJG",
"IJG-short",
"ImageMagick",
"iMatix",
"Imlib2",
"Info-ZIP",
"Inner-Net-2.0",
"Intel",
"Intel-ACPI",
"Interbase-1.0",
"IPA",
"IPL-1.0",
"ISC",
"ISC-Veillard",
"Jam",
"JasPer-2.0",
"JPL-image",
"JPNIC",
"JSON",
"Kastrup",
"Kazlib",
"Knuth-CTAN",
"LAL-1.2",
"LAL-1.3",
"Latex2e",
"Latex2e-translated-notice",
"Leptonica",
"LGPL-2.0-only",
"LGPL-2.0-or-later",
"LGPL-2.1-only",
"LGPL-2.1-or-later",
"LGPL-3.0-only",
"LGPL-3.0-or-later",
"LGPLLR",
"Libpng",
"libpng-2.0",
"libselinux-1.0",
"libtiff",
"libutil-David-Nugent",
"LiLiQ-P-1.1",
"LiLiQ-R-1.1",
"LiLiQ-Rplus-1.1",
"Linux-man-pages-1-para",
"Linux-man-pages-copyleft",
"Linux-man-pages-copyleft-2-para",
"Linux-man-pages-copyleft-var",
"Linux-OpenIB",
"LOOP",
"LPD-document",
"LPL-1.0",
"LPL-1.02",
"LPPL-1.0",
"LPPL-1.1",
"LPPL-1.2",
"LPPL-1.3a",
"LPPL-1.3c",
"lsof",
"Lucida-Bitmap-Fonts",
"LZMA-SDK-9.11-to-9.20",
"LZMA-SDK-9.22",
"Mackerras-3-Clause",
"Mackerras-3-Clause-acknowledgment",
"magaz",
"mailprio",
"MakeIndex",
"Martin-Birgmeier",
"McPhee-slideshow",
"metamail",
"Minpack",
"MirOS",
"MIT",
"MIT-0",
"MIT-advertising",
"MIT-CMU",
"MIT-enna",
"MIT-feh",
"MIT-Festival",
"MIT-Modern-Variant",
"MIT-open-group",
"MIT-testregex",
"MIT-Wu",
"MITNFA",
"MMIXware",
"Motosoto",
"MPEG-SSG",
"mpi-permissive",
"mpich2",
"MPL-1.0",
"MPL-1.1",
"MPL-2.0",
"MPL-2.0-no-copyleft-exception",
"mplus",
"MS-LPL",
"MS-PL",
"MS-RL",
"MTLL",
"MulanPSL-1.0",
"MulanPSL-2.0",
"Multics",
"Mup",
"NAIST-2003",
"NASA-1.3",
"Naumen",
"NBPL-1.0",
"NCGL-UK-2.0",
"NCSA",
"Net-SNMP",
"NetCDF",
"Newsletr",
"NGPL",
"NICTA-1.0",
"NIST-PD",
"NIST-PD-fallback",
"NIST-Software",
"NLOD-1.0",
"NLOD-2.0",
"NLPL",
"Nokia",
"NOSL",
"Noweb",
"NPL-1.0",
"NPL-1.1",
"NPOSL-3.0",
"NRL",
"NTP",
"NTP-0",
"O-UDA-1.0",
"OCCT-PL",
"OCLC-2.0",
"ODbL-1.0",
"ODC-By-1.0",
"OFFIS",
"OFL-1.0",
"OFL-1.0-no-RFN",
"OFL-1.0-RFN",
"OFL-1.1",
"OFL-1.1-no-RFN",
"OFL-1.1-RFN",
"OGC-1.0",
"OGDL-Taiwan-1.0",
"OGL-Canada-2.0",
"OGL-UK-1.0",
"OGL-UK-2.0",
"OGL-UK-3.0",
"OGTSL",
"OLDAP-1.1",
"OLDAP-1.2",
"OLDAP-1.3",
"OLDAP-1.4",
"OLDAP-2.0",
"OLDAP-2.0.1",
"OLDAP-2.1",
"OLDAP-2.2",
"OLDAP-2.2.1",
"OLDAP-2.2.2",
"OLDAP-2.3",
"OLDAP-2.4",
"OLDAP-2.5",
"OLDAP-2.6",
"OLDAP-2.7",
"OLDAP-2.8",
"OLFL-1.3",
"OML",
"OpenPBS-2.3",
"OpenSSL",
"OpenSSL-standalone",
"OpenVision",
"OPL-1.0",
"OPL-UK-3.0",
"OPUBL-1.0",
"OSET-PL-2.1",
"OSL-1.0",
"OSL-1.1",
"OSL-2.0",
"OSL-2.1",
"OSL-3.0",
"PADL",
"Parity-6.0.0",
"Parity-7.0.0",
"PDDL-1.0",
"PHP-3.0",
"PHP-3.01",
"Pixar",
"Plexus",
"pnmstitch",
"PolyForm-Noncommercial-1.0.0",
"PolyForm-Small-Business-1.0.0",
"PostgreSQL",
"PSF-2.0",
"psfrag",
"psutils",
"Python-2.0",
"Python-2.0.1",
"python-ldap",
"Qhull",
"QPL-1.0",
"QPL-1.0-INRIA-2004",
"radvd",
"Rdisc",
"RHeCos-1.1",
"RPL-1.1",
"RPL-1.5",
"RPSL-1.0",
"RSA-MD",
"RSCPL",
"Ruby",
"SAX-PD",
"SAX-PD-2.0",
"Saxpath",
"SCEA",
"SchemeReport",
"Sendmail",
"Sendmail-8.23",
"SGI-B-1.0",
"SGI-B-1.1",
"SGI-B-2.0",
"SGI-OpenGL",
"SGP4",
"SHL-0.5",
"SHL-0.51",
"SimPL-2.0",
"SISSL",
"SISSL-1.2",
"SL",
"Sleepycat",
"SMLNJ",
"SMPPL",
"SNIA",
"snprintf",
"softSurfer",
"Soundex",
"Spencer-86",
"Spencer-94",
"Spencer-99",
"SPL-1.0",
"ssh-keyscan",
"SSH-OpenSSH",
"SSH-short",
"SSLeay-standalone",
"SSPL-1.0",
"SugarCRM-1.1.3",
"Sun-PPP",
"SunPro",
"SWL",
"swrule",
"Symlinks",
"TAPR-OHL-1.0",
"TCL",
"TCP-wrappers",
"TermReadKey",
"TGPPL-1.0",
"TMate",
"TORQUE-1.1",
"TOSL",
"TPDL",
"TPL-1.0",
"TTWL",
"TTYP0",
"TU-Berlin-1.0",
"TU-Berlin-2.0",
"UCAR",
"UCL-1.0",
"ulem",
"UMich-Merit",
"Unicode-3.0",
"Unicode-DFS-2015",
"Unicode-DFS-2016",
"Unicode-TOU",
"UnixCrypt",
"Unlicense",
"UPL-1.0",
"URT-RLE",
"Vim",
"VOSTROM",
"VSL-1.0",
"W3C",
"W3C-19980720",
"W3C-20150513",
"w3m",
"Watcom-1.0",
"Widget-Workshop",
"Wsuipa",
"WTFPL",
"X11",
"X11-distribute-modifications-variant",
"Xdebug-1.03",
"Xerox",
"Xfig",
"XFree86-1.1",
"xinetd",
"xkeyboard-config-Zinoviev",
"xlock",
"Xnet",
"xpp",
"XSkat",
"YPL-1.0",
"YPL-1.1",
"Zed",
"Zeeff",
"Zend-2.0",
"Zimbra-1.3",
"Zimbra-1.4",
"Zlib",
"zlib-acknowledgement",
"ZPL-1.1",
"ZPL-2.0",
"ZPL-2.1"
],
"title": "LicenseId",
"type": "string"
},
{
"enum": [
"AGPL-1.0",
"AGPL-3.0",
"BSD-2-Clause-FreeBSD",
"BSD-2-Clause-NetBSD",
"bzip2-1.0.5",
"eCos-2.0",
"GFDL-1.1",
"GFDL-1.2",
"GFDL-1.3",
"GPL-1.0",
"GPL-1.0+",
"GPL-2.0",
"GPL-2.0+",
"GPL-2.0-with-autoconf-exception",
"GPL-2.0-with-bison-exception",
"GPL-2.0-with-classpath-exception",
"GPL-2.0-with-font-exception",
"GPL-2.0-with-GCC-exception",
"GPL-3.0",
"GPL-3.0+",
"GPL-3.0-with-autoconf-exception",
"GPL-3.0-with-GCC-exception",
"LGPL-2.0",
"LGPL-2.0+",
"LGPL-2.1",
"LGPL-2.1+",
"LGPL-3.0",
"LGPL-3.0+",
"Nunit",
"StandardML-NJ",
"wxWindows"
],
"title": "DeprecatedLicenseId",
"type": "string"
},
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A [SPDX license identifier](https://spdx.org/licenses/).\nWe do not support custom license beyond the SPDX license list, if you need that please\n[open a GitHub issue](https://github.com/bioimage-io/spec-bioimage-io/issues/new/choose\n) to discuss your intentions with the community.",
"examples": [
"CC0-1.0",
"MIT",
"BSD-2-Clause"
],
"title": "License"
},
"type": {
"const": "dataset",
"title": "Type",
"type": "string"
},
"id": {
"anyOf": [
{
"minLength": 1,
"title": "DatasetId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "bioimage.io-wide unique resource identifier\nassigned by bioimage.io; version **un**specific.",
"title": "Id"
},
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "\"URL to the source of the dataset.",
"title": "Source"
}
},
"required": [
"name",
"description",
"format_version",
"type"
],
"title": "dataset 0.2.4",
"type": "object"
}
Fields:
-
_validation_summary(Optional[ValidationSummary]) -
_root(Union[RootHttpUrl, DirectoryPath, ZipFile]) -
_file_name(Optional[FileName]) -
name(NotEmpty[str]) -
description(str) -
covers(List[FileSource_cover]) -
id_emoji(Optional[str]) -
authors(List[Author]) -
attachments(Optional[AttachmentsDescr]) -
cite(List[CiteEntry]) -
config(Dict[str, YamlValue]) -
download_url(Optional[HttpUrl]) -
git_repo(Optional[str]) -
icon(Union[str, FileSource, None]) -
links(List[str]) -
uploader(Optional[Uploader]) -
maintainers(List[Maintainer]) -
rdf_source(Optional[FileSource]) -
tags(List[str]) -
version(Optional[Version]) -
version_number(Optional[int]) -
format_version(Literal['0.2.4']) -
badges(List[BadgeDescr]) -
documentation(Optional[FileSource]) -
license(Union[LicenseId, DeprecatedLicenseId, str, None]) -
type(Literal['dataset']) -
id(Optional[DatasetId]) -
source(Optional[HttpUrl])
attachments
pydantic-field
¤
attachments: Optional[AttachmentsDescr] = None
file and other attachments
authors
pydantic-field
¤
authors: List[Author]
The authors are the creators of the RDF and the primary points of contact.
config
pydantic-field
¤
config: Dict[str, YamlValue]
A field for custom configuration that can contain any keys not present in the RDF spec.
This means you should not store, for example, a github repo URL in config since we already have the
git_repo field defined in the spec.
Keys in config may be very specific to a tool or consumer software. To avoid conflicting definitions,
it is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,
for example:
config:
bioimageio: # here is the domain name
my_custom_key: 3837283
another_key:
nested: value
imagej: # config specific to ImageJ
macro_dir: path/to/macro/file
snake_case for keys in config.
You may want to list linked files additionally under attachments to include them when packaging a resource
(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains
an altered rdf.yaml file with local references to the downloaded files)
covers
pydantic-field
¤
covers: List[FileSource_cover]
Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.
documentation
pydantic-field
¤
documentation: Optional[FileSource] = None
URL or relative path to a markdown file with additional documentation.
The recommended documentation file name is README.md. An .md suffix is mandatory.
download_url
pydantic-field
¤
download_url: Optional[HttpUrl] = None
URL to download the resource from (deprecated)
file_name
property
¤
file_name: Optional[FileName]
File name of the bioimageio.yaml file the description was loaded from.
git_repo
pydantic-field
¤
git_repo: Optional[str] = None
A URL to the Git repository where the resource is being developed.
id
pydantic-field
¤
id: Optional[DatasetId] = None
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
implemented_format_version_tuple
class-attribute
¤
implemented_format_version_tuple: Tuple[int, int, int]
license
pydantic-field
¤
license: Union[
LicenseId, DeprecatedLicenseId, str, None
] = None
A SPDX license identifier. We do not support custom license beyond the SPDX license list, if you need that please open a GitHub issue to discuss your intentions with the community.
maintainers
pydantic-field
¤
maintainers: List[Maintainer]
Maintainers of this resource.
If not specified authors are maintainers and at least some of them should specify their github_user name
rdf_source
pydantic-field
¤
rdf_source: Optional[FileSource] = None
Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from. Do not set this field in a YAML file.
root
property
¤
root: Union[RootHttpUrl, DirectoryPath, ZipFile]
The URL/Path prefix to resolve any relative paths with.
uploader
pydantic-field
¤
uploader: Optional[Uploader] = None
The person who uploaded the model (e.g. to bioimage.io)
version
pydantic-field
¤
version: Optional[Version] = None
The version of the resource following SemVer 2.0.
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any)
Source code in src/bioimageio/spec/_internal/common_nodes.py
199 200 201 202 203 204 205 206 207 208 209 210 211 | |
accept_author_strings
classmethod
¤
accept_author_strings(
authors: Union[Any, Sequence[Any]],
) -> Any
we unofficially accept strings as author entries
Source code in src/bioimageio/spec/generic/v0_2.py
245 246 247 248 249 250 251 252 253 254 255 | |
deprecated_spdx_license
classmethod
¤
deprecated_spdx_license(
value: Optional[
Union[LicenseId, DeprecatedLicenseId, str]
],
)
Source code in src/bioimageio/spec/generic/v0_2.py
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | |
get_package_content
¤
get_package_content() -> Dict[
FileName, Union[FileDescr, BioimageioYamlContent]
]
Returns package content without creating the package.
Source code in src/bioimageio/spec/_internal/common_nodes.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | |
load
classmethod
¤
load(
data: BioimageioYamlContentView,
context: Optional[ValidationContext] = None,
) -> Union[Self, InvalidDescr]
factory method to create a resource description object
Source code in src/bioimageio/spec/_internal/common_nodes.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
package
¤
package(
dest: Optional[
Union[ZipFile, IO[bytes], Path, str]
] = None,
) -> ZipFile
package the described resource as a zip archive
| PARAMETER | DESCRIPTION |
|---|---|
|
(path/bytes stream of) destination zipfile
TYPE:
|
Source code in src/bioimageio/spec/_internal/common_nodes.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | |
warn_about_tag_categories
classmethod
¤
warn_about_tag_categories(
value: List[str], info: ValidationInfo
) -> List[str]
Source code in src/bioimageio/spec/generic/v0_2.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
Datetime
¤
Bases: RootModel[datetime]
flowchart TD
bioimageio.spec.model.v0_4.Datetime[Datetime]
click bioimageio.spec.model.v0_4.Datetime href "" "bioimageio.spec.model.v0_4.Datetime"
Timestamp in ISO 8601 format with a few restrictions listed here.
| METHOD | DESCRIPTION |
|---|---|
now |
|
now
classmethod
¤
now()
Source code in src/bioimageio/spec/_internal/types.py
135 136 137 | |
Dependencies
¤
Bases: ValidatedStringWithInnerNode[DependenciesNode]
flowchart TD
bioimageio.spec.model.v0_4.Dependencies[Dependencies]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode[ValidatedStringWithInnerNode]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode --> bioimageio.spec.model.v0_4.Dependencies
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode
click bioimageio.spec.model.v0_4.Dependencies href "" "bioimageio.spec.model.v0_4.Dependencies"
click bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode href "" "bioimageio.spec._internal.validated_string_with_inner_node.ValidatedStringWithInnerNode"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
file |
Dependency file
|
manager |
Dependency manager
|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
DependenciesNode
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"$defs": {
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"properties": {
"manager": {
"description": "Dependency manager",
"examples": [
"conda",
"maven",
"pip"
],
"minLength": 1,
"title": "Manager",
"type": "string"
},
"file": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "Dependency file",
"title": "File"
}
},
"required": [
"manager",
"file"
],
"title": "model.v0_4.DependenciesNode",
"type": "object"
}
Fields:
-
manager(NotEmpty[str]) -
file(FileSource_)
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
Doi
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.Doi[Doi]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.Doi
click bioimageio.spec.model.v0_4.Doi href "" "bioimageio.spec.model.v0_4.Doi"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
A digital object identifier, see https://www.doi.org/
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
FileDescr
pydantic-model
¤
Bases: Node
A file description
Show JSON schema:
{
"$defs": {
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"description": "A file description",
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "File source",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
}
},
"required": [
"source"
],
"title": "_internal.io.FileDescr",
"type": "object"
}
Fields:
-
source(FileSource) -
sha256(Optional[Sha256])
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
GenericModelDescrBase
pydantic-model
¤
Bases: ResourceDescrBase
Base for all resource descriptions including of model descriptions
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"CiteEntry": {
"additionalProperties": false,
"properties": {
"text": {
"description": "free text description",
"title": "Text",
"type": "string"
},
"doi": {
"anyOf": [
{
"description": "A digital object identifier, see https://www.doi.org/",
"pattern": "^10\\.[0-9]{4}.+$",
"title": "Doi",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A digital object identifier (DOI) is the prefered citation reference.\nSee https://www.doi.org/ for details. (alternatively specify `url`)",
"title": "Doi"
},
"url": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to cite (preferably specify a `doi` instead)",
"title": "Url"
}
},
"required": [
"text"
],
"title": "generic.v0_2.CiteEntry",
"type": "object"
},
"Maintainer": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Name"
},
"github_user": {
"title": "Github User",
"type": "string"
}
},
"required": [
"github_user"
],
"title": "generic.v0_2.Maintainer",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Uploader": {
"additionalProperties": false,
"properties": {
"email": {
"description": "Email",
"format": "email",
"title": "Email",
"type": "string"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "name",
"title": "Name"
}
},
"required": [
"email"
],
"title": "generic.v0_2.Uploader",
"type": "object"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
},
"YamlValue": {
"anyOf": [
{
"type": "boolean"
},
{
"format": "date",
"type": "string"
},
{
"format": "date-time",
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "string"
},
{
"items": {
"$ref": "#/$defs/YamlValue"
},
"type": "array"
},
{
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"type": "object"
},
{
"type": "null"
}
]
}
},
"additionalProperties": false,
"description": "Base for all resource descriptions including of model descriptions",
"properties": {
"name": {
"description": "A human-friendly name of the resource description",
"minLength": 1,
"title": "Name",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"covers": {
"description": "Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.\nThe supported image formats are: ('.gif', '.jpeg', '.jpg', '.png', '.svg', '.tif', '.tiff')",
"examples": [
[
"cover.png"
]
],
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Covers",
"type": "array"
},
"id_emoji": {
"anyOf": [
{
"examples": [
"\ud83e\udd88",
"\ud83e\udda5"
],
"maxLength": 1,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "UTF-8 emoji for display alongside the `id`.",
"title": "Id Emoji"
},
"authors": {
"description": "The authors are the creators of the RDF and the primary points of contact.",
"items": {
"$ref": "#/$defs/Author"
},
"title": "Authors",
"type": "array"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "file and other attachments"
},
"cite": {
"description": "citations",
"items": {
"$ref": "#/$defs/CiteEntry"
},
"title": "Cite",
"type": "array"
},
"config": {
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"description": "A field for custom configuration that can contain any keys not present in the RDF spec.\nThis means you should not store, for example, a github repo URL in `config` since we already have the\n`git_repo` field defined in the spec.\nKeys in `config` may be very specific to a tool or consumer software. To avoid conflicting definitions,\nit is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,\nfor example:\n```yaml\nconfig:\n bioimageio: # here is the domain name\n my_custom_key: 3837283\n another_key:\n nested: value\n imagej: # config specific to ImageJ\n macro_dir: path/to/macro/file\n```\nIf possible, please use [`snake_case`](https://en.wikipedia.org/wiki/Snake_case) for keys in `config`.\nYou may want to list linked files additionally under `attachments` to include them when packaging a resource\n(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains\nan altered rdf.yaml file with local references to the downloaded files)",
"examples": [
{
"bioimageio": {
"another_key": {
"nested": "value"
},
"my_custom_key": 3837283
},
"imagej": {
"macro_dir": "path/to/macro/file"
}
}
],
"title": "Config",
"type": "object"
},
"download_url": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to download the resource from (deprecated)",
"title": "Download Url"
},
"git_repo": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A URL to the Git repository where the resource is being developed.",
"examples": [
"https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_descriptions/models/unet2d_nuclei_broad"
],
"title": "Git Repo"
},
"icon": {
"anyOf": [
{
"maxLength": 2,
"minLength": 1,
"type": "string"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An icon for illustration",
"title": "Icon"
},
"links": {
"description": "IDs of other bioimage.io resources",
"examples": [
[
"ilastik/ilastik",
"deepimagej/deepimagej",
"zero/notebook_u-net_3d_zerocostdl4mic"
]
],
"items": {
"type": "string"
},
"title": "Links",
"type": "array"
},
"uploader": {
"anyOf": [
{
"$ref": "#/$defs/Uploader"
},
{
"type": "null"
}
],
"default": null,
"description": "The person who uploaded the model (e.g. to bioimage.io)"
},
"maintainers": {
"description": "Maintainers of this resource.\nIf not specified `authors` are maintainers and at least some of them should specify their `github_user` name",
"items": {
"$ref": "#/$defs/Maintainer"
},
"title": "Maintainers",
"type": "array"
},
"rdf_source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from.\nDo not set this field in a YAML file.",
"title": "Rdf Source"
},
"tags": {
"description": "Associated tags",
"examples": [
[
"unet2d",
"pytorch",
"nucleus",
"segmentation",
"dsb2018"
]
],
"items": {
"type": "string"
},
"title": "Tags",
"type": "array"
},
"version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "The version of the resource following SemVer 2.0."
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version)",
"title": "Version Number"
}
},
"required": [
"name",
"description"
],
"title": "generic.v0_2.GenericModelDescrBase",
"type": "object"
}
Fields:
-
_validation_summary(Optional[ValidationSummary]) -
_root(Union[RootHttpUrl, DirectoryPath, ZipFile]) -
_file_name(Optional[FileName]) -
name(NotEmpty[str]) -
description(str) -
covers(List[FileSource_cover]) -
id_emoji(Optional[str]) -
authors(List[Author]) -
attachments(Optional[AttachmentsDescr]) -
cite(List[CiteEntry]) -
config(Dict[str, YamlValue]) -
download_url(Optional[HttpUrl]) -
git_repo(Optional[str]) -
icon(Union[str, FileSource, None]) -
links(List[str]) -
uploader(Optional[Uploader]) -
maintainers(List[Maintainer]) -
rdf_source(Optional[FileSource]) -
tags(List[str]) -
version(Optional[Version]) -
version_number(Optional[int])
attachments
pydantic-field
¤
attachments: Optional[AttachmentsDescr] = None
file and other attachments
authors
pydantic-field
¤
authors: List[Author]
The authors are the creators of the RDF and the primary points of contact.
config
pydantic-field
¤
config: Dict[str, YamlValue]
A field for custom configuration that can contain any keys not present in the RDF spec.
This means you should not store, for example, a github repo URL in config since we already have the
git_repo field defined in the spec.
Keys in config may be very specific to a tool or consumer software. To avoid conflicting definitions,
it is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,
for example:
config:
bioimageio: # here is the domain name
my_custom_key: 3837283
another_key:
nested: value
imagej: # config specific to ImageJ
macro_dir: path/to/macro/file
snake_case for keys in config.
You may want to list linked files additionally under attachments to include them when packaging a resource
(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains
an altered rdf.yaml file with local references to the downloaded files)
covers
pydantic-field
¤
covers: List[FileSource_cover]
Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.
download_url
pydantic-field
¤
download_url: Optional[HttpUrl] = None
URL to download the resource from (deprecated)
file_name
property
¤
file_name: Optional[FileName]
File name of the bioimageio.yaml file the description was loaded from.
git_repo
pydantic-field
¤
git_repo: Optional[str] = None
A URL to the Git repository where the resource is being developed.
implemented_format_version_tuple
class-attribute
¤
implemented_format_version_tuple: Tuple[int, int, int]
maintainers
pydantic-field
¤
maintainers: List[Maintainer]
Maintainers of this resource.
If not specified authors are maintainers and at least some of them should specify their github_user name
rdf_source
pydantic-field
¤
rdf_source: Optional[FileSource] = None
Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from. Do not set this field in a YAML file.
root
property
¤
root: Union[RootHttpUrl, DirectoryPath, ZipFile]
The URL/Path prefix to resolve any relative paths with.
uploader
pydantic-field
¤
uploader: Optional[Uploader] = None
The person who uploaded the model (e.g. to bioimage.io)
version
pydantic-field
¤
version: Optional[Version] = None
The version of the resource following SemVer 2.0.
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any)
Source code in src/bioimageio/spec/_internal/common_nodes.py
199 200 201 202 203 204 205 206 207 208 209 210 211 | |
accept_author_strings
classmethod
¤
accept_author_strings(
authors: Union[Any, Sequence[Any]],
) -> Any
we unofficially accept strings as author entries
Source code in src/bioimageio/spec/generic/v0_2.py
245 246 247 248 249 250 251 252 253 254 255 | |
get_package_content
¤
get_package_content() -> Dict[
FileName, Union[FileDescr, BioimageioYamlContent]
]
Returns package content without creating the package.
Source code in src/bioimageio/spec/_internal/common_nodes.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | |
load
classmethod
¤
load(
data: BioimageioYamlContentView,
context: Optional[ValidationContext] = None,
) -> Union[Self, InvalidDescr]
factory method to create a resource description object
Source code in src/bioimageio/spec/_internal/common_nodes.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
package
¤
package(
dest: Optional[
Union[ZipFile, IO[bytes], Path, str]
] = None,
) -> ZipFile
package the described resource as a zip archive
| PARAMETER | DESCRIPTION |
|---|---|
|
(path/bytes stream of) destination zipfile
TYPE:
|
Source code in src/bioimageio/spec/_internal/common_nodes.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | |
warn_about_tag_categories
classmethod
¤
warn_about_tag_categories(
value: List[str], info: ValidationInfo
) -> List[str]
Source code in src/bioimageio/spec/generic/v0_2.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
HttpUrl
¤
Bases: RootHttpUrl
flowchart TD
bioimageio.spec.model.v0_4.HttpUrl[HttpUrl]
bioimageio.spec._internal.root_url.RootHttpUrl[RootHttpUrl]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.root_url.RootHttpUrl --> bioimageio.spec.model.v0_4.HttpUrl
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec._internal.root_url.RootHttpUrl
click bioimageio.spec.model.v0_4.HttpUrl href "" "bioimageio.spec.model.v0_4.HttpUrl"
click bioimageio.spec._internal.root_url.RootHttpUrl href "" "bioimageio.spec._internal.root_url.RootHttpUrl"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
A URL with the HTTP or HTTPS scheme.
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
absolute |
analog to |
exists |
True if URL is available |
| ATTRIBUTE | DESCRIPTION |
|---|---|
host |
TYPE:
|
parent |
TYPE:
|
parents |
iterate over all URL parents (max 100)
TYPE:
|
path |
TYPE:
|
root_model |
TYPE:
|
scheme |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
absolute
¤
absolute()
analog to absolute method of pathlib.
Source code in src/bioimageio/spec/_internal/root_url.py
18 19 20 | |
exists
¤
exists()
True if URL is available
Source code in src/bioimageio/spec/_internal/url.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | |
Identifier
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.Identifier[Identifier]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.Identifier
click bioimageio.spec.model.v0_4.Identifier href "" "bioimageio.spec.model.v0_4.Identifier"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
ImplicitOutputShape
pydantic-model
¤
Bases: Node
Output tensor shape depending on an input tensor shape.
shape(output_tensor) = shape(input_tensor) * scale + 2 * offset
Show JSON schema:
{
"additionalProperties": false,
"description": "Output tensor shape depending on an input tensor shape.\n`shape(output_tensor) = shape(input_tensor) * scale + 2 * offset`",
"properties": {
"reference_tensor": {
"description": "Name of the reference tensor.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"scale": {
"description": "output_pix/input_pix for each dimension.\n'null' values indicate new dimensions, whose length is defined by 2*`offset`",
"items": {
"anyOf": [
{
"type": "number"
},
{
"type": "null"
}
]
},
"minItems": 1,
"title": "Scale",
"type": "array"
},
"offset": {
"description": "Position of origin wrt to input.",
"items": {
"anyOf": [
{
"type": "integer"
},
{
"multipleOf": 0.5,
"type": "number"
}
]
},
"minItems": 1,
"title": "Offset",
"type": "array"
}
},
"required": [
"reference_tensor",
"scale",
"offset"
],
"title": "model.v0_4.ImplicitOutputShape",
"type": "object"
}
Fields:
-
reference_tensor(TensorName) -
scale(NotEmpty[List[Optional[float]]]) -
offset(NotEmpty[List[Union[int, float]]])
Validators:
scale
pydantic-field
¤
scale: NotEmpty[List[Optional[float]]]
output_pix/input_pix for each dimension.
'null' values indicate new dimensions, whose length is defined by 2*offset
__len__
¤
__len__() -> int
Source code in src/bioimageio/spec/model/v0_4.py
581 582 | |
matching_lengths
pydantic-validator
¤
matching_lengths() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
584 585 586 587 588 589 590 591 592 593 594 595 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
InputTensorDescr
pydantic-model
¤
Bases: TensorDescrBase
Show JSON schema:
{
"$defs": {
"BinarizeDescr": {
"additionalProperties": false,
"description": "BinarizeDescr the tensor with a fixed `BinarizeKwargs.threshold`.\nValues above the threshold will be set to one, values below the threshold to zero.",
"properties": {
"name": {
"const": "binarize",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/BinarizeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.BinarizeDescr",
"type": "object"
},
"BinarizeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `BinarizeDescr`",
"properties": {
"threshold": {
"description": "The fixed threshold",
"title": "Threshold",
"type": "number"
}
},
"required": [
"threshold"
],
"title": "model.v0_4.BinarizeKwargs",
"type": "object"
},
"ClipDescr": {
"additionalProperties": false,
"description": "Clip tensor values to a range.\n\nSet tensor values below `ClipKwargs.min` to `ClipKwargs.min`\nand above `ClipKwargs.max` to `ClipKwargs.max`.",
"properties": {
"name": {
"const": "clip",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ClipKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ClipDescr",
"type": "object"
},
"ClipKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ClipDescr`",
"properties": {
"min": {
"description": "minimum value for clipping",
"title": "Min",
"type": "number"
},
"max": {
"description": "maximum value for clipping",
"title": "Max",
"type": "number"
}
},
"required": [
"min",
"max"
],
"title": "model.v0_4.ClipKwargs",
"type": "object"
},
"ParameterizedInputShape": {
"additionalProperties": false,
"description": "A sequence of valid shapes given by `shape_k = min + k * step for k in {0, 1, ...}`.",
"properties": {
"min": {
"description": "The minimum input shape",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Min",
"type": "array"
},
"step": {
"description": "The minimum shape change",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Step",
"type": "array"
}
},
"required": [
"min",
"step"
],
"title": "model.v0_4.ParameterizedInputShape",
"type": "object"
},
"ScaleLinearDescr": {
"additionalProperties": false,
"description": "Fixed linear scaling.",
"properties": {
"name": {
"const": "scale_linear",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleLinearKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleLinearDescr",
"type": "object"
},
"ScaleLinearKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleLinearDescr`",
"properties": {
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to scale the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"gain": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 1.0,
"description": "multiplicative factor",
"title": "Gain"
},
"offset": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 0.0,
"description": "additive term",
"title": "Offset"
}
},
"title": "model.v0_4.ScaleLinearKwargs",
"type": "object"
},
"ScaleRangeDescr": {
"additionalProperties": false,
"description": "Scale with percentiles.",
"properties": {
"name": {
"const": "scale_range",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleRangeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleRangeDescr",
"type": "object"
},
"ScaleRangeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleRangeDescr`\n\nFor `min_percentile`=0.0 (the default) and `max_percentile`=100 (the default)\nthis processing step normalizes data to the [0, 1] intervall.\nFor other percentiles the normalized values will partially be outside the [0, 1]\nintervall. Use `ScaleRange` followed by `ClipDescr` if you want to limit the\nnormalized values to a range.",
"properties": {
"mode": {
"description": "Mode for computing percentiles.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | compute for the entire dataset |\n| per_sample | compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example xy to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"min_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 0.0,
"description": "The lower percentile used to determine the value to align with zero.",
"ge": 0,
"lt": 100,
"title": "Min Percentile"
},
"max_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 100.0,
"description": "The upper percentile used to determine the value to align with one.\nHas to be bigger than `min_percentile`.\nThe range is 1 to 100 instead of 0 to 100 to avoid mistakenly\naccepting percentiles specified in the range 0.0 to 1.0.",
"gt": 1,
"le": 100,
"title": "Max Percentile"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability.\n`out = (tensor - v_lower) / (v_upper - v_lower + eps)`;\nwith `v_lower,v_upper` values at the respective percentiles.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
},
"reference_tensor": {
"anyOf": [
{
"minLength": 1,
"title": "TensorName",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Tensor name to compute the percentiles from. Default: The tensor itself.\nFor any tensor in `inputs` only input tensor references are allowed.\nFor a tensor in `outputs` only input tensor refereences are allowed if `mode: per_dataset`",
"title": "Reference Tensor"
}
},
"required": [
"mode",
"axes"
],
"title": "model.v0_4.ScaleRangeKwargs",
"type": "object"
},
"SigmoidDescr": {
"additionalProperties": false,
"description": "The logistic sigmoid funciton, a.k.a. expit function.",
"properties": {
"name": {
"const": "sigmoid",
"title": "Name",
"type": "string"
}
},
"required": [
"name"
],
"title": "model.v0_4.SigmoidDescr",
"type": "object"
},
"ZeroMeanUnitVarianceDescr": {
"additionalProperties": false,
"description": "Subtract mean and divide by variance.",
"properties": {
"name": {
"const": "zero_mean_unit_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ZeroMeanUnitVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ZeroMeanUnitVarianceDescr",
"type": "object"
},
"ZeroMeanUnitVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ZeroMeanUnitVarianceDescr`",
"properties": {
"mode": {
"default": "fixed",
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| fixed | Fixed values for mean and variance |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"fixed",
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example `xy` to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"mean": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The mean value(s) to use for `mode: fixed`.\nFor example `[1.1, 2.2, 3.3]` in the case of a 3 channel image with `axes: xy`.",
"examples": [
[
1.1,
2.2,
3.3
]
],
"title": "Mean"
},
"std": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The standard deviation values to use for `mode: fixed`. Analogous to mean.",
"examples": [
[
0.1,
0.2,
0.3
]
],
"title": "Std"
},
"eps": {
"default": 1e-06,
"description": "epsilon for numeric stability: `out = (tensor - mean) / (std + eps)`.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"axes"
],
"title": "model.v0_4.ZeroMeanUnitVarianceKwargs",
"type": "object"
}
},
"additionalProperties": false,
"properties": {
"name": {
"description": "Tensor name. No duplicates are allowed.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"description": {
"default": "",
"title": "Description",
"type": "string"
},
"axes": {
"description": "Axes identifying characters. Same length and order as the axes in `shape`.\n| axis | description |\n| --- | --- |\n| b | batch (groups multiple samples) |\n| i | instance/index/element |\n| t | time |\n| c | channel |\n| z | spatial dimension z |\n| y | spatial dimension y |\n| x | spatial dimension x |",
"title": "Axes",
"type": "string"
},
"data_range": {
"anyOf": [
{
"maxItems": 2,
"minItems": 2,
"prefixItems": [
{
"type": "number"
},
{
"type": "number"
}
],
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Tuple `(minimum, maximum)` specifying the allowed range of the data in this tensor.\nIf not specified, the full data range that can be expressed in `data_type` is allowed.",
"title": "Data Range"
},
"data_type": {
"description": "For now an input tensor is expected to be given as `float32`.\nThe data flow in bioimage.io models is explained\n[in this diagram.](https://docs.google.com/drawings/d/1FTw8-Rn6a6nXdkZ_SkMumtcjvur9mtIhRqLwnKqZNHM/edit).",
"enum": [
"float32",
"uint8",
"uint16"
],
"title": "Data Type",
"type": "string"
},
"shape": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"$ref": "#/$defs/ParameterizedInputShape"
}
],
"description": "Specification of input tensor shape.",
"examples": [
[
1,
512,
512,
1
],
{
"min": [
1,
64,
64,
1
],
"step": [
0,
32,
32,
0
]
}
],
"title": "Shape"
},
"preprocessing": {
"description": "Description of how this input should be preprocessed.",
"items": {
"discriminator": {
"mapping": {
"binarize": "#/$defs/BinarizeDescr",
"clip": "#/$defs/ClipDescr",
"scale_linear": "#/$defs/ScaleLinearDescr",
"scale_range": "#/$defs/ScaleRangeDescr",
"sigmoid": "#/$defs/SigmoidDescr",
"zero_mean_unit_variance": "#/$defs/ZeroMeanUnitVarianceDescr"
},
"propertyName": "name"
},
"oneOf": [
{
"$ref": "#/$defs/BinarizeDescr"
},
{
"$ref": "#/$defs/ClipDescr"
},
{
"$ref": "#/$defs/ScaleLinearDescr"
},
{
"$ref": "#/$defs/SigmoidDescr"
},
{
"$ref": "#/$defs/ZeroMeanUnitVarianceDescr"
},
{
"$ref": "#/$defs/ScaleRangeDescr"
}
]
},
"title": "Preprocessing",
"type": "array"
}
},
"required": [
"name",
"axes",
"data_type",
"shape"
],
"title": "model.v0_4.InputTensorDescr",
"type": "object"
}
Fields:
-
name(TensorName) -
description(str) -
axes(AxesStr) -
data_range(Optional[Tuple[float, float]]) -
data_type(Literal['float32', 'uint8', 'uint16']) -
shape(Union[Sequence[int], ParameterizedInputShape]) -
preprocessing(List[PreprocessingDescr])
Validators:
axes
pydantic-field
¤
axes: AxesStr
Axes identifying characters. Same length and order as the axes in shape.
| axis | description |
| --- | --- |
| b | batch (groups multiple samples) |
| i | instance/index/element |
| t | time |
| c | channel |
| z | spatial dimension z |
| y | spatial dimension y |
| x | spatial dimension x |
data_range
pydantic-field
¤
data_range: Optional[Tuple[float, float]] = None
Tuple (minimum, maximum) specifying the allowed range of the data in this tensor.
If not specified, the full data range that can be expressed in data_type is allowed.
data_type
pydantic-field
¤
data_type: Literal['float32', 'uint8', 'uint16']
For now an input tensor is expected to be given as float32.
The data flow in bioimage.io models is explained
in this diagram..
preprocessing
pydantic-field
¤
preprocessing: List[PreprocessingDescr]
Description of how this input should be preprocessed.
shape
pydantic-field
¤
shape: Union[Sequence[int], ParameterizedInputShape]
Specification of input tensor shape.
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_preprocessing_kwargs
pydantic-validator
¤
validate_preprocessing_kwargs() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
960 961 962 963 964 965 966 967 968 969 | |
zero_batch_step_and_one_batch_size
pydantic-validator
¤
zero_batch_step_and_one_batch_size() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 | |
KerasHdf5WeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "TensorFlow version used to create these weights"
}
},
"required": [
"source"
],
"title": "model.v0_4.KerasHdf5WeightsDescr",
"type": "object"
}
Fields:
-
source(FileSource_) -
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
tensorflow_version(Optional[Version])
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
tensorflow_version
pydantic-field
¤
tensorflow_version: Optional[Version] = None
TensorFlow version used to create these weights
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
KwargsNode
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {},
"title": "_internal.common_nodes.KwargsNode",
"type": "object"
}
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
LicenseId
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.LicenseId[LicenseId]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.LicenseId
click bioimageio.spec.model.v0_4.LicenseId href "" "bioimageio.spec.model.v0_4.LicenseId"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
LinkedDataset
pydantic-model
¤
Bases: Node
Reference to a bioimage.io dataset.
Show JSON schema:
{
"additionalProperties": false,
"description": "Reference to a bioimage.io dataset.",
"properties": {
"id": {
"description": "A valid dataset `id` from the bioimage.io collection.",
"minLength": 1,
"title": "DatasetId",
"type": "string"
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version) of linked dataset",
"title": "Version Number"
}
},
"required": [
"id"
],
"title": "dataset.v0_2.LinkedDataset",
"type": "object"
}
Fields:
-
id(DatasetId) -
version_number(Optional[int])
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version) of linked dataset
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
LinkedModel
pydantic-model
¤
Bases: Node
Reference to a bioimage.io model.
Show JSON schema:
{
"additionalProperties": false,
"description": "Reference to a bioimage.io model.",
"properties": {
"id": {
"description": "A valid model `id` from the bioimage.io collection.",
"examples": [
"affable-shark",
"ambitious-sloth"
],
"minLength": 1,
"title": "ModelId",
"type": "string"
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version) of linked model",
"title": "Version Number"
}
},
"required": [
"id"
],
"title": "model.v0_4.LinkedModel",
"type": "object"
}
Fields:
-
id(ModelId) -
version_number(Optional[int])
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version) of linked model
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
LinkedResource
pydantic-model
¤
Bases: Node
Reference to a bioimage.io resource
Show JSON schema:
{
"additionalProperties": false,
"description": "Reference to a bioimage.io resource",
"properties": {
"id": {
"description": "A valid resource `id` from the bioimage.io collection.",
"minLength": 1,
"title": "ResourceId",
"type": "string"
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version) of linked resource",
"title": "Version Number"
}
},
"required": [
"id"
],
"title": "generic.v0_2.LinkedResource",
"type": "object"
}
Fields:
-
id(ResourceId) -
version_number(Optional[int])
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version) of linked resource
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
LowerCaseIdentifier
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.LowerCaseIdentifier[LowerCaseIdentifier]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.LowerCaseIdentifier
click bioimageio.spec.model.v0_4.LowerCaseIdentifier href "" "bioimageio.spec.model.v0_4.LowerCaseIdentifier"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
root_model
class-attribute
¤
root_model: Type[RootModel[Any]] = RootModel[
LowerCaseIdentifierAnno
]
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
Maintainer
pydantic-model
¤
Bases: _Person
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Name"
},
"github_user": {
"title": "Github User",
"type": "string"
}
},
"required": [
"github_user"
],
"title": "generic.v0_2.Maintainer",
"type": "object"
}
Fields:
-
affiliation(Optional[str]) -
email(Optional[EmailStr]) -
orcid(Optional[OrcidId]) -
name(Optional[str]) -
github_user(str)
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ModelDescr
pydantic-model
¤
Bases: GenericModelDescrBase
Specification of the fields used in a bioimage.io-compliant RDF that describes AI models with pretrained weights.
These fields are typically stored in a YAML file which we call a model resource description file (model RDF).
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"BadgeDescr": {
"additionalProperties": false,
"description": "A custom badge",
"properties": {
"label": {
"description": "badge label to display on hover",
"examples": [
"Open in Colab"
],
"title": "Label",
"type": "string"
},
"icon": {
"anyOf": [
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "badge icon (included in bioimage.io package if not a URL)",
"examples": [
"https://colab.research.google.com/assets/colab-badge.svg"
],
"title": "Icon"
},
"url": {
"description": "target URL",
"examples": [
"https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-net_2D_ZeroCostDL4Mic.ipynb"
],
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
}
},
"required": [
"label",
"url"
],
"title": "generic.v0_2.BadgeDescr",
"type": "object"
},
"BinarizeDescr": {
"additionalProperties": false,
"description": "BinarizeDescr the tensor with a fixed `BinarizeKwargs.threshold`.\nValues above the threshold will be set to one, values below the threshold to zero.",
"properties": {
"name": {
"const": "binarize",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/BinarizeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.BinarizeDescr",
"type": "object"
},
"BinarizeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `BinarizeDescr`",
"properties": {
"threshold": {
"description": "The fixed threshold",
"title": "Threshold",
"type": "number"
}
},
"required": [
"threshold"
],
"title": "model.v0_4.BinarizeKwargs",
"type": "object"
},
"CiteEntry": {
"additionalProperties": false,
"properties": {
"text": {
"description": "free text description",
"title": "Text",
"type": "string"
},
"doi": {
"anyOf": [
{
"description": "A digital object identifier, see https://www.doi.org/",
"pattern": "^10\\.[0-9]{4}.+$",
"title": "Doi",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A digital object identifier (DOI) is the prefered citation reference.\nSee https://www.doi.org/ for details. (alternatively specify `url`)",
"title": "Doi"
},
"url": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to cite (preferably specify a `doi` instead)",
"title": "Url"
}
},
"required": [
"text"
],
"title": "generic.v0_2.CiteEntry",
"type": "object"
},
"ClipDescr": {
"additionalProperties": false,
"description": "Clip tensor values to a range.\n\nSet tensor values below `ClipKwargs.min` to `ClipKwargs.min`\nand above `ClipKwargs.max` to `ClipKwargs.max`.",
"properties": {
"name": {
"const": "clip",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ClipKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ClipDescr",
"type": "object"
},
"ClipKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ClipDescr`",
"properties": {
"min": {
"description": "minimum value for clipping",
"title": "Min",
"type": "number"
},
"max": {
"description": "maximum value for clipping",
"title": "Max",
"type": "number"
}
},
"required": [
"min",
"max"
],
"title": "model.v0_4.ClipKwargs",
"type": "object"
},
"DatasetDescr": {
"additionalProperties": false,
"description": "A bioimage.io dataset resource description file (dataset RDF) describes a dataset relevant to bioimage\nprocessing.",
"properties": {
"name": {
"description": "A human-friendly name of the resource description",
"minLength": 1,
"title": "Name",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"covers": {
"description": "Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.\nThe supported image formats are: ('.gif', '.jpeg', '.jpg', '.png', '.svg', '.tif', '.tiff')",
"examples": [
[
"cover.png"
]
],
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Covers",
"type": "array"
},
"id_emoji": {
"anyOf": [
{
"examples": [
"\ud83e\udd88",
"\ud83e\udda5"
],
"maxLength": 1,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "UTF-8 emoji for display alongside the `id`.",
"title": "Id Emoji"
},
"authors": {
"description": "The authors are the creators of the RDF and the primary points of contact.",
"items": {
"$ref": "#/$defs/Author"
},
"title": "Authors",
"type": "array"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "file and other attachments"
},
"cite": {
"description": "citations",
"items": {
"$ref": "#/$defs/CiteEntry"
},
"title": "Cite",
"type": "array"
},
"config": {
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"description": "A field for custom configuration that can contain any keys not present in the RDF spec.\nThis means you should not store, for example, a github repo URL in `config` since we already have the\n`git_repo` field defined in the spec.\nKeys in `config` may be very specific to a tool or consumer software. To avoid conflicting definitions,\nit is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,\nfor example:\n```yaml\nconfig:\n bioimageio: # here is the domain name\n my_custom_key: 3837283\n another_key:\n nested: value\n imagej: # config specific to ImageJ\n macro_dir: path/to/macro/file\n```\nIf possible, please use [`snake_case`](https://en.wikipedia.org/wiki/Snake_case) for keys in `config`.\nYou may want to list linked files additionally under `attachments` to include them when packaging a resource\n(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains\nan altered rdf.yaml file with local references to the downloaded files)",
"examples": [
{
"bioimageio": {
"another_key": {
"nested": "value"
},
"my_custom_key": 3837283
},
"imagej": {
"macro_dir": "path/to/macro/file"
}
}
],
"title": "Config",
"type": "object"
},
"download_url": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to download the resource from (deprecated)",
"title": "Download Url"
},
"git_repo": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A URL to the Git repository where the resource is being developed.",
"examples": [
"https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_descriptions/models/unet2d_nuclei_broad"
],
"title": "Git Repo"
},
"icon": {
"anyOf": [
{
"maxLength": 2,
"minLength": 1,
"type": "string"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An icon for illustration",
"title": "Icon"
},
"links": {
"description": "IDs of other bioimage.io resources",
"examples": [
[
"ilastik/ilastik",
"deepimagej/deepimagej",
"zero/notebook_u-net_3d_zerocostdl4mic"
]
],
"items": {
"type": "string"
},
"title": "Links",
"type": "array"
},
"uploader": {
"anyOf": [
{
"$ref": "#/$defs/Uploader"
},
{
"type": "null"
}
],
"default": null,
"description": "The person who uploaded the model (e.g. to bioimage.io)"
},
"maintainers": {
"description": "Maintainers of this resource.\nIf not specified `authors` are maintainers and at least some of them should specify their `github_user` name",
"items": {
"$ref": "#/$defs/Maintainer"
},
"title": "Maintainers",
"type": "array"
},
"rdf_source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from.\nDo not set this field in a YAML file.",
"title": "Rdf Source"
},
"tags": {
"description": "Associated tags",
"examples": [
[
"unet2d",
"pytorch",
"nucleus",
"segmentation",
"dsb2018"
]
],
"items": {
"type": "string"
},
"title": "Tags",
"type": "array"
},
"version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "The version of the resource following SemVer 2.0."
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version)",
"title": "Version Number"
},
"format_version": {
"const": "0.2.4",
"description": "The format version of this resource specification\n(not the `version` of the resource description)\nWhen creating a new resource always use the latest micro/patch version described here.\nThe `format_version` is important for any consumer software to understand how to parse the fields.",
"title": "Format Version",
"type": "string"
},
"badges": {
"description": "badges associated with this resource",
"items": {
"$ref": "#/$defs/BadgeDescr"
},
"title": "Badges",
"type": "array"
},
"documentation": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL or relative path to a markdown file with additional documentation.\nThe recommended documentation file name is `README.md`. An `.md` suffix is mandatory.",
"examples": [
"https://raw.githubusercontent.com/bioimage-io/spec-bioimage-io/main/example_descriptions/models/unet2d_nuclei_broad/README.md",
"README.md"
],
"title": "Documentation"
},
"license": {
"anyOf": [
{
"enum": [
"0BSD",
"AAL",
"Abstyles",
"AdaCore-doc",
"Adobe-2006",
"Adobe-Display-PostScript",
"Adobe-Glyph",
"Adobe-Utopia",
"ADSL",
"AFL-1.1",
"AFL-1.2",
"AFL-2.0",
"AFL-2.1",
"AFL-3.0",
"Afmparse",
"AGPL-1.0-only",
"AGPL-1.0-or-later",
"AGPL-3.0-only",
"AGPL-3.0-or-later",
"Aladdin",
"AMDPLPA",
"AML",
"AML-glslang",
"AMPAS",
"ANTLR-PD",
"ANTLR-PD-fallback",
"Apache-1.0",
"Apache-1.1",
"Apache-2.0",
"APAFML",
"APL-1.0",
"App-s2p",
"APSL-1.0",
"APSL-1.1",
"APSL-1.2",
"APSL-2.0",
"Arphic-1999",
"Artistic-1.0",
"Artistic-1.0-cl8",
"Artistic-1.0-Perl",
"Artistic-2.0",
"ASWF-Digital-Assets-1.0",
"ASWF-Digital-Assets-1.1",
"Baekmuk",
"Bahyph",
"Barr",
"bcrypt-Solar-Designer",
"Beerware",
"Bitstream-Charter",
"Bitstream-Vera",
"BitTorrent-1.0",
"BitTorrent-1.1",
"blessing",
"BlueOak-1.0.0",
"Boehm-GC",
"Borceux",
"Brian-Gladman-2-Clause",
"Brian-Gladman-3-Clause",
"BSD-1-Clause",
"BSD-2-Clause",
"BSD-2-Clause-Darwin",
"BSD-2-Clause-Patent",
"BSD-2-Clause-Views",
"BSD-3-Clause",
"BSD-3-Clause-acpica",
"BSD-3-Clause-Attribution",
"BSD-3-Clause-Clear",
"BSD-3-Clause-flex",
"BSD-3-Clause-HP",
"BSD-3-Clause-LBNL",
"BSD-3-Clause-Modification",
"BSD-3-Clause-No-Military-License",
"BSD-3-Clause-No-Nuclear-License",
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause-No-Nuclear-Warranty",
"BSD-3-Clause-Open-MPI",
"BSD-3-Clause-Sun",
"BSD-4-Clause",
"BSD-4-Clause-Shortened",
"BSD-4-Clause-UC",
"BSD-4.3RENO",
"BSD-4.3TAHOE",
"BSD-Advertising-Acknowledgement",
"BSD-Attribution-HPND-disclaimer",
"BSD-Inferno-Nettverk",
"BSD-Protection",
"BSD-Source-beginning-file",
"BSD-Source-Code",
"BSD-Systemics",
"BSD-Systemics-W3Works",
"BSL-1.0",
"BUSL-1.1",
"bzip2-1.0.6",
"C-UDA-1.0",
"CAL-1.0",
"CAL-1.0-Combined-Work-Exception",
"Caldera",
"Caldera-no-preamble",
"CATOSL-1.1",
"CC-BY-1.0",
"CC-BY-2.0",
"CC-BY-2.5",
"CC-BY-2.5-AU",
"CC-BY-3.0",
"CC-BY-3.0-AT",
"CC-BY-3.0-AU",
"CC-BY-3.0-DE",
"CC-BY-3.0-IGO",
"CC-BY-3.0-NL",
"CC-BY-3.0-US",
"CC-BY-4.0",
"CC-BY-NC-1.0",
"CC-BY-NC-2.0",
"CC-BY-NC-2.5",
"CC-BY-NC-3.0",
"CC-BY-NC-3.0-DE",
"CC-BY-NC-4.0",
"CC-BY-NC-ND-1.0",
"CC-BY-NC-ND-2.0",
"CC-BY-NC-ND-2.5",
"CC-BY-NC-ND-3.0",
"CC-BY-NC-ND-3.0-DE",
"CC-BY-NC-ND-3.0-IGO",
"CC-BY-NC-ND-4.0",
"CC-BY-NC-SA-1.0",
"CC-BY-NC-SA-2.0",
"CC-BY-NC-SA-2.0-DE",
"CC-BY-NC-SA-2.0-FR",
"CC-BY-NC-SA-2.0-UK",
"CC-BY-NC-SA-2.5",
"CC-BY-NC-SA-3.0",
"CC-BY-NC-SA-3.0-DE",
"CC-BY-NC-SA-3.0-IGO",
"CC-BY-NC-SA-4.0",
"CC-BY-ND-1.0",
"CC-BY-ND-2.0",
"CC-BY-ND-2.5",
"CC-BY-ND-3.0",
"CC-BY-ND-3.0-DE",
"CC-BY-ND-4.0",
"CC-BY-SA-1.0",
"CC-BY-SA-2.0",
"CC-BY-SA-2.0-UK",
"CC-BY-SA-2.1-JP",
"CC-BY-SA-2.5",
"CC-BY-SA-3.0",
"CC-BY-SA-3.0-AT",
"CC-BY-SA-3.0-DE",
"CC-BY-SA-3.0-IGO",
"CC-BY-SA-4.0",
"CC-PDDC",
"CC0-1.0",
"CDDL-1.0",
"CDDL-1.1",
"CDL-1.0",
"CDLA-Permissive-1.0",
"CDLA-Permissive-2.0",
"CDLA-Sharing-1.0",
"CECILL-1.0",
"CECILL-1.1",
"CECILL-2.0",
"CECILL-2.1",
"CECILL-B",
"CECILL-C",
"CERN-OHL-1.1",
"CERN-OHL-1.2",
"CERN-OHL-P-2.0",
"CERN-OHL-S-2.0",
"CERN-OHL-W-2.0",
"CFITSIO",
"check-cvs",
"checkmk",
"ClArtistic",
"Clips",
"CMU-Mach",
"CMU-Mach-nodoc",
"CNRI-Jython",
"CNRI-Python",
"CNRI-Python-GPL-Compatible",
"COIL-1.0",
"Community-Spec-1.0",
"Condor-1.1",
"copyleft-next-0.3.0",
"copyleft-next-0.3.1",
"Cornell-Lossless-JPEG",
"CPAL-1.0",
"CPL-1.0",
"CPOL-1.02",
"Cronyx",
"Crossword",
"CrystalStacker",
"CUA-OPL-1.0",
"Cube",
"curl",
"D-FSL-1.0",
"DEC-3-Clause",
"diffmark",
"DL-DE-BY-2.0",
"DL-DE-ZERO-2.0",
"DOC",
"Dotseqn",
"DRL-1.0",
"DRL-1.1",
"DSDP",
"dtoa",
"dvipdfm",
"ECL-1.0",
"ECL-2.0",
"EFL-1.0",
"EFL-2.0",
"eGenix",
"Elastic-2.0",
"Entessa",
"EPICS",
"EPL-1.0",
"EPL-2.0",
"ErlPL-1.1",
"etalab-2.0",
"EUDatagrid",
"EUPL-1.0",
"EUPL-1.1",
"EUPL-1.2",
"Eurosym",
"Fair",
"FBM",
"FDK-AAC",
"Ferguson-Twofish",
"Frameworx-1.0",
"FreeBSD-DOC",
"FreeImage",
"FSFAP",
"FSFAP-no-warranty-disclaimer",
"FSFUL",
"FSFULLR",
"FSFULLRWD",
"FTL",
"Furuseth",
"fwlw",
"GCR-docs",
"GD",
"GFDL-1.1-invariants-only",
"GFDL-1.1-invariants-or-later",
"GFDL-1.1-no-invariants-only",
"GFDL-1.1-no-invariants-or-later",
"GFDL-1.1-only",
"GFDL-1.1-or-later",
"GFDL-1.2-invariants-only",
"GFDL-1.2-invariants-or-later",
"GFDL-1.2-no-invariants-only",
"GFDL-1.2-no-invariants-or-later",
"GFDL-1.2-only",
"GFDL-1.2-or-later",
"GFDL-1.3-invariants-only",
"GFDL-1.3-invariants-or-later",
"GFDL-1.3-no-invariants-only",
"GFDL-1.3-no-invariants-or-later",
"GFDL-1.3-only",
"GFDL-1.3-or-later",
"Giftware",
"GL2PS",
"Glide",
"Glulxe",
"GLWTPL",
"gnuplot",
"GPL-1.0-only",
"GPL-1.0-or-later",
"GPL-2.0-only",
"GPL-2.0-or-later",
"GPL-3.0-only",
"GPL-3.0-or-later",
"Graphics-Gems",
"gSOAP-1.3b",
"gtkbook",
"HaskellReport",
"hdparm",
"Hippocratic-2.1",
"HP-1986",
"HP-1989",
"HPND",
"HPND-DEC",
"HPND-doc",
"HPND-doc-sell",
"HPND-export-US",
"HPND-export-US-modify",
"HPND-Fenneberg-Livingston",
"HPND-INRIA-IMAG",
"HPND-Kevlin-Henney",
"HPND-Markus-Kuhn",
"HPND-MIT-disclaimer",
"HPND-Pbmplus",
"HPND-sell-MIT-disclaimer-xserver",
"HPND-sell-regexpr",
"HPND-sell-variant",
"HPND-sell-variant-MIT-disclaimer",
"HPND-UC",
"HTMLTIDY",
"IBM-pibs",
"ICU",
"IEC-Code-Components-EULA",
"IJG",
"IJG-short",
"ImageMagick",
"iMatix",
"Imlib2",
"Info-ZIP",
"Inner-Net-2.0",
"Intel",
"Intel-ACPI",
"Interbase-1.0",
"IPA",
"IPL-1.0",
"ISC",
"ISC-Veillard",
"Jam",
"JasPer-2.0",
"JPL-image",
"JPNIC",
"JSON",
"Kastrup",
"Kazlib",
"Knuth-CTAN",
"LAL-1.2",
"LAL-1.3",
"Latex2e",
"Latex2e-translated-notice",
"Leptonica",
"LGPL-2.0-only",
"LGPL-2.0-or-later",
"LGPL-2.1-only",
"LGPL-2.1-or-later",
"LGPL-3.0-only",
"LGPL-3.0-or-later",
"LGPLLR",
"Libpng",
"libpng-2.0",
"libselinux-1.0",
"libtiff",
"libutil-David-Nugent",
"LiLiQ-P-1.1",
"LiLiQ-R-1.1",
"LiLiQ-Rplus-1.1",
"Linux-man-pages-1-para",
"Linux-man-pages-copyleft",
"Linux-man-pages-copyleft-2-para",
"Linux-man-pages-copyleft-var",
"Linux-OpenIB",
"LOOP",
"LPD-document",
"LPL-1.0",
"LPL-1.02",
"LPPL-1.0",
"LPPL-1.1",
"LPPL-1.2",
"LPPL-1.3a",
"LPPL-1.3c",
"lsof",
"Lucida-Bitmap-Fonts",
"LZMA-SDK-9.11-to-9.20",
"LZMA-SDK-9.22",
"Mackerras-3-Clause",
"Mackerras-3-Clause-acknowledgment",
"magaz",
"mailprio",
"MakeIndex",
"Martin-Birgmeier",
"McPhee-slideshow",
"metamail",
"Minpack",
"MirOS",
"MIT",
"MIT-0",
"MIT-advertising",
"MIT-CMU",
"MIT-enna",
"MIT-feh",
"MIT-Festival",
"MIT-Modern-Variant",
"MIT-open-group",
"MIT-testregex",
"MIT-Wu",
"MITNFA",
"MMIXware",
"Motosoto",
"MPEG-SSG",
"mpi-permissive",
"mpich2",
"MPL-1.0",
"MPL-1.1",
"MPL-2.0",
"MPL-2.0-no-copyleft-exception",
"mplus",
"MS-LPL",
"MS-PL",
"MS-RL",
"MTLL",
"MulanPSL-1.0",
"MulanPSL-2.0",
"Multics",
"Mup",
"NAIST-2003",
"NASA-1.3",
"Naumen",
"NBPL-1.0",
"NCGL-UK-2.0",
"NCSA",
"Net-SNMP",
"NetCDF",
"Newsletr",
"NGPL",
"NICTA-1.0",
"NIST-PD",
"NIST-PD-fallback",
"NIST-Software",
"NLOD-1.0",
"NLOD-2.0",
"NLPL",
"Nokia",
"NOSL",
"Noweb",
"NPL-1.0",
"NPL-1.1",
"NPOSL-3.0",
"NRL",
"NTP",
"NTP-0",
"O-UDA-1.0",
"OCCT-PL",
"OCLC-2.0",
"ODbL-1.0",
"ODC-By-1.0",
"OFFIS",
"OFL-1.0",
"OFL-1.0-no-RFN",
"OFL-1.0-RFN",
"OFL-1.1",
"OFL-1.1-no-RFN",
"OFL-1.1-RFN",
"OGC-1.0",
"OGDL-Taiwan-1.0",
"OGL-Canada-2.0",
"OGL-UK-1.0",
"OGL-UK-2.0",
"OGL-UK-3.0",
"OGTSL",
"OLDAP-1.1",
"OLDAP-1.2",
"OLDAP-1.3",
"OLDAP-1.4",
"OLDAP-2.0",
"OLDAP-2.0.1",
"OLDAP-2.1",
"OLDAP-2.2",
"OLDAP-2.2.1",
"OLDAP-2.2.2",
"OLDAP-2.3",
"OLDAP-2.4",
"OLDAP-2.5",
"OLDAP-2.6",
"OLDAP-2.7",
"OLDAP-2.8",
"OLFL-1.3",
"OML",
"OpenPBS-2.3",
"OpenSSL",
"OpenSSL-standalone",
"OpenVision",
"OPL-1.0",
"OPL-UK-3.0",
"OPUBL-1.0",
"OSET-PL-2.1",
"OSL-1.0",
"OSL-1.1",
"OSL-2.0",
"OSL-2.1",
"OSL-3.0",
"PADL",
"Parity-6.0.0",
"Parity-7.0.0",
"PDDL-1.0",
"PHP-3.0",
"PHP-3.01",
"Pixar",
"Plexus",
"pnmstitch",
"PolyForm-Noncommercial-1.0.0",
"PolyForm-Small-Business-1.0.0",
"PostgreSQL",
"PSF-2.0",
"psfrag",
"psutils",
"Python-2.0",
"Python-2.0.1",
"python-ldap",
"Qhull",
"QPL-1.0",
"QPL-1.0-INRIA-2004",
"radvd",
"Rdisc",
"RHeCos-1.1",
"RPL-1.1",
"RPL-1.5",
"RPSL-1.0",
"RSA-MD",
"RSCPL",
"Ruby",
"SAX-PD",
"SAX-PD-2.0",
"Saxpath",
"SCEA",
"SchemeReport",
"Sendmail",
"Sendmail-8.23",
"SGI-B-1.0",
"SGI-B-1.1",
"SGI-B-2.0",
"SGI-OpenGL",
"SGP4",
"SHL-0.5",
"SHL-0.51",
"SimPL-2.0",
"SISSL",
"SISSL-1.2",
"SL",
"Sleepycat",
"SMLNJ",
"SMPPL",
"SNIA",
"snprintf",
"softSurfer",
"Soundex",
"Spencer-86",
"Spencer-94",
"Spencer-99",
"SPL-1.0",
"ssh-keyscan",
"SSH-OpenSSH",
"SSH-short",
"SSLeay-standalone",
"SSPL-1.0",
"SugarCRM-1.1.3",
"Sun-PPP",
"SunPro",
"SWL",
"swrule",
"Symlinks",
"TAPR-OHL-1.0",
"TCL",
"TCP-wrappers",
"TermReadKey",
"TGPPL-1.0",
"TMate",
"TORQUE-1.1",
"TOSL",
"TPDL",
"TPL-1.0",
"TTWL",
"TTYP0",
"TU-Berlin-1.0",
"TU-Berlin-2.0",
"UCAR",
"UCL-1.0",
"ulem",
"UMich-Merit",
"Unicode-3.0",
"Unicode-DFS-2015",
"Unicode-DFS-2016",
"Unicode-TOU",
"UnixCrypt",
"Unlicense",
"UPL-1.0",
"URT-RLE",
"Vim",
"VOSTROM",
"VSL-1.0",
"W3C",
"W3C-19980720",
"W3C-20150513",
"w3m",
"Watcom-1.0",
"Widget-Workshop",
"Wsuipa",
"WTFPL",
"X11",
"X11-distribute-modifications-variant",
"Xdebug-1.03",
"Xerox",
"Xfig",
"XFree86-1.1",
"xinetd",
"xkeyboard-config-Zinoviev",
"xlock",
"Xnet",
"xpp",
"XSkat",
"YPL-1.0",
"YPL-1.1",
"Zed",
"Zeeff",
"Zend-2.0",
"Zimbra-1.3",
"Zimbra-1.4",
"Zlib",
"zlib-acknowledgement",
"ZPL-1.1",
"ZPL-2.0",
"ZPL-2.1"
],
"title": "LicenseId",
"type": "string"
},
{
"enum": [
"AGPL-1.0",
"AGPL-3.0",
"BSD-2-Clause-FreeBSD",
"BSD-2-Clause-NetBSD",
"bzip2-1.0.5",
"eCos-2.0",
"GFDL-1.1",
"GFDL-1.2",
"GFDL-1.3",
"GPL-1.0",
"GPL-1.0+",
"GPL-2.0",
"GPL-2.0+",
"GPL-2.0-with-autoconf-exception",
"GPL-2.0-with-bison-exception",
"GPL-2.0-with-classpath-exception",
"GPL-2.0-with-font-exception",
"GPL-2.0-with-GCC-exception",
"GPL-3.0",
"GPL-3.0+",
"GPL-3.0-with-autoconf-exception",
"GPL-3.0-with-GCC-exception",
"LGPL-2.0",
"LGPL-2.0+",
"LGPL-2.1",
"LGPL-2.1+",
"LGPL-3.0",
"LGPL-3.0+",
"Nunit",
"StandardML-NJ",
"wxWindows"
],
"title": "DeprecatedLicenseId",
"type": "string"
},
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A [SPDX license identifier](https://spdx.org/licenses/).\nWe do not support custom license beyond the SPDX license list, if you need that please\n[open a GitHub issue](https://github.com/bioimage-io/spec-bioimage-io/issues/new/choose\n) to discuss your intentions with the community.",
"examples": [
"CC0-1.0",
"MIT",
"BSD-2-Clause"
],
"title": "License"
},
"type": {
"const": "dataset",
"title": "Type",
"type": "string"
},
"id": {
"anyOf": [
{
"minLength": 1,
"title": "DatasetId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "bioimage.io-wide unique resource identifier\nassigned by bioimage.io; version **un**specific.",
"title": "Id"
},
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "\"URL to the source of the dataset.",
"title": "Source"
}
},
"required": [
"name",
"description",
"format_version",
"type"
],
"title": "dataset 0.2.4",
"type": "object"
},
"Datetime": {
"description": "Timestamp in [ISO 8601](#https://en.wikipedia.org/wiki/ISO_8601) format\nwith a few restrictions listed [here](https://docs.python.org/3/library/datetime.html#datetime.datetime.fromisoformat).",
"format": "date-time",
"title": "Datetime",
"type": "string"
},
"ImplicitOutputShape": {
"additionalProperties": false,
"description": "Output tensor shape depending on an input tensor shape.\n`shape(output_tensor) = shape(input_tensor) * scale + 2 * offset`",
"properties": {
"reference_tensor": {
"description": "Name of the reference tensor.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"scale": {
"description": "output_pix/input_pix for each dimension.\n'null' values indicate new dimensions, whose length is defined by 2*`offset`",
"items": {
"anyOf": [
{
"type": "number"
},
{
"type": "null"
}
]
},
"minItems": 1,
"title": "Scale",
"type": "array"
},
"offset": {
"description": "Position of origin wrt to input.",
"items": {
"anyOf": [
{
"type": "integer"
},
{
"multipleOf": 0.5,
"type": "number"
}
]
},
"minItems": 1,
"title": "Offset",
"type": "array"
}
},
"required": [
"reference_tensor",
"scale",
"offset"
],
"title": "model.v0_4.ImplicitOutputShape",
"type": "object"
},
"InputTensorDescr": {
"additionalProperties": false,
"properties": {
"name": {
"description": "Tensor name. No duplicates are allowed.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"description": {
"default": "",
"title": "Description",
"type": "string"
},
"axes": {
"description": "Axes identifying characters. Same length and order as the axes in `shape`.\n| axis | description |\n| --- | --- |\n| b | batch (groups multiple samples) |\n| i | instance/index/element |\n| t | time |\n| c | channel |\n| z | spatial dimension z |\n| y | spatial dimension y |\n| x | spatial dimension x |",
"title": "Axes",
"type": "string"
},
"data_range": {
"anyOf": [
{
"maxItems": 2,
"minItems": 2,
"prefixItems": [
{
"type": "number"
},
{
"type": "number"
}
],
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Tuple `(minimum, maximum)` specifying the allowed range of the data in this tensor.\nIf not specified, the full data range that can be expressed in `data_type` is allowed.",
"title": "Data Range"
},
"data_type": {
"description": "For now an input tensor is expected to be given as `float32`.\nThe data flow in bioimage.io models is explained\n[in this diagram.](https://docs.google.com/drawings/d/1FTw8-Rn6a6nXdkZ_SkMumtcjvur9mtIhRqLwnKqZNHM/edit).",
"enum": [
"float32",
"uint8",
"uint16"
],
"title": "Data Type",
"type": "string"
},
"shape": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"$ref": "#/$defs/ParameterizedInputShape"
}
],
"description": "Specification of input tensor shape.",
"examples": [
[
1,
512,
512,
1
],
{
"min": [
1,
64,
64,
1
],
"step": [
0,
32,
32,
0
]
}
],
"title": "Shape"
},
"preprocessing": {
"description": "Description of how this input should be preprocessed.",
"items": {
"discriminator": {
"mapping": {
"binarize": "#/$defs/BinarizeDescr",
"clip": "#/$defs/ClipDescr",
"scale_linear": "#/$defs/ScaleLinearDescr",
"scale_range": "#/$defs/ScaleRangeDescr",
"sigmoid": "#/$defs/SigmoidDescr",
"zero_mean_unit_variance": "#/$defs/ZeroMeanUnitVarianceDescr"
},
"propertyName": "name"
},
"oneOf": [
{
"$ref": "#/$defs/BinarizeDescr"
},
{
"$ref": "#/$defs/ClipDescr"
},
{
"$ref": "#/$defs/ScaleLinearDescr"
},
{
"$ref": "#/$defs/SigmoidDescr"
},
{
"$ref": "#/$defs/ZeroMeanUnitVarianceDescr"
},
{
"$ref": "#/$defs/ScaleRangeDescr"
}
]
},
"title": "Preprocessing",
"type": "array"
}
},
"required": [
"name",
"axes",
"data_type",
"shape"
],
"title": "model.v0_4.InputTensorDescr",
"type": "object"
},
"KerasHdf5WeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "TensorFlow version used to create these weights"
}
},
"required": [
"source"
],
"title": "model.v0_4.KerasHdf5WeightsDescr",
"type": "object"
},
"LinkedDataset": {
"additionalProperties": false,
"description": "Reference to a bioimage.io dataset.",
"properties": {
"id": {
"description": "A valid dataset `id` from the bioimage.io collection.",
"minLength": 1,
"title": "DatasetId",
"type": "string"
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version) of linked dataset",
"title": "Version Number"
}
},
"required": [
"id"
],
"title": "dataset.v0_2.LinkedDataset",
"type": "object"
},
"LinkedModel": {
"additionalProperties": false,
"description": "Reference to a bioimage.io model.",
"properties": {
"id": {
"description": "A valid model `id` from the bioimage.io collection.",
"examples": [
"affable-shark",
"ambitious-sloth"
],
"minLength": 1,
"title": "ModelId",
"type": "string"
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version) of linked model",
"title": "Version Number"
}
},
"required": [
"id"
],
"title": "model.v0_4.LinkedModel",
"type": "object"
},
"Maintainer": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Name"
},
"github_user": {
"title": "Github User",
"type": "string"
}
},
"required": [
"github_user"
],
"title": "generic.v0_2.Maintainer",
"type": "object"
},
"OnnxWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"opset_version": {
"anyOf": [
{
"minimum": 7,
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "ONNX opset version",
"title": "Opset Version"
}
},
"required": [
"source"
],
"title": "model.v0_4.OnnxWeightsDescr",
"type": "object"
},
"OutputTensorDescr": {
"additionalProperties": false,
"properties": {
"name": {
"description": "Tensor name. No duplicates are allowed.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"description": {
"default": "",
"title": "Description",
"type": "string"
},
"axes": {
"description": "Axes identifying characters. Same length and order as the axes in `shape`.\n| axis | description |\n| --- | --- |\n| b | batch (groups multiple samples) |\n| i | instance/index/element |\n| t | time |\n| c | channel |\n| z | spatial dimension z |\n| y | spatial dimension y |\n| x | spatial dimension x |",
"title": "Axes",
"type": "string"
},
"data_range": {
"anyOf": [
{
"maxItems": 2,
"minItems": 2,
"prefixItems": [
{
"type": "number"
},
{
"type": "number"
}
],
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Tuple `(minimum, maximum)` specifying the allowed range of the data in this tensor.\nIf not specified, the full data range that can be expressed in `data_type` is allowed.",
"title": "Data Range"
},
"data_type": {
"description": "Data type.\nThe data flow in bioimage.io models is explained\n[in this diagram.](https://docs.google.com/drawings/d/1FTw8-Rn6a6nXdkZ_SkMumtcjvur9mtIhRqLwnKqZNHM/edit).",
"enum": [
"float32",
"float64",
"uint8",
"int8",
"uint16",
"int16",
"uint32",
"int32",
"uint64",
"int64",
"bool"
],
"title": "Data Type",
"type": "string"
},
"shape": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"$ref": "#/$defs/ImplicitOutputShape"
}
],
"description": "Output tensor shape.",
"title": "Shape"
},
"halo": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The `halo` that should be cropped from the output tensor to avoid boundary effects.\nThe `halo` is to be cropped from both sides, i.e. `shape_after_crop = shape - 2 * halo`.\nTo document a `halo` that is already cropped by the model `shape.offset` has to be used instead.",
"title": "Halo"
},
"postprocessing": {
"description": "Description of how this output should be postprocessed.",
"items": {
"discriminator": {
"mapping": {
"binarize": "#/$defs/BinarizeDescr",
"clip": "#/$defs/ClipDescr",
"scale_linear": "#/$defs/ScaleLinearDescr",
"scale_mean_variance": "#/$defs/ScaleMeanVarianceDescr",
"scale_range": "#/$defs/ScaleRangeDescr",
"sigmoid": "#/$defs/SigmoidDescr",
"zero_mean_unit_variance": "#/$defs/ZeroMeanUnitVarianceDescr"
},
"propertyName": "name"
},
"oneOf": [
{
"$ref": "#/$defs/BinarizeDescr"
},
{
"$ref": "#/$defs/ClipDescr"
},
{
"$ref": "#/$defs/ScaleLinearDescr"
},
{
"$ref": "#/$defs/SigmoidDescr"
},
{
"$ref": "#/$defs/ZeroMeanUnitVarianceDescr"
},
{
"$ref": "#/$defs/ScaleRangeDescr"
},
{
"$ref": "#/$defs/ScaleMeanVarianceDescr"
}
]
},
"title": "Postprocessing",
"type": "array"
}
},
"required": [
"name",
"axes",
"data_type",
"shape"
],
"title": "model.v0_4.OutputTensorDescr",
"type": "object"
},
"ParameterizedInputShape": {
"additionalProperties": false,
"description": "A sequence of valid shapes given by `shape_k = min + k * step for k in {0, 1, ...}`.",
"properties": {
"min": {
"description": "The minimum input shape",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Min",
"type": "array"
},
"step": {
"description": "The minimum shape change",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Step",
"type": "array"
}
},
"required": [
"min",
"step"
],
"title": "model.v0_4.ParameterizedInputShape",
"type": "object"
},
"PytorchStateDictWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"architecture": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "CallableFromFile",
"type": "string"
},
{
"pattern": "^.+\\..+$",
"title": "CallableFromDepencency",
"type": "string"
}
],
"description": "callable returning a torch.nn.Module instance.\nLocal implementation: `<relative path to file>:<identifier of implementation within the file>`.\nImplementation in a dependency: `<dependency-package>.<[dependency-module]>.<identifier>`.",
"examples": [
"my_function.py:MyNetworkClass",
"my_module.submodule.get_my_model"
],
"title": "Architecture"
},
"architecture_sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The SHA256 of the architecture source file, if the architecture is not defined in a module listed in `dependencies`\nYou can drag and drop your file to this\n[online tool](http://emn178.github.io/online-tools/sha256_checksum.html) to generate a SHA256 in your browser.\nOr you can generate a SHA256 checksum with Python's `hashlib`,\n[here is a codesnippet](https://gist.github.com/FynnBe/e64460463df89439cff218bbf59c1100).",
"title": "Architecture Sha256"
},
"kwargs": {
"additionalProperties": true,
"description": "key word arguments for the `architecture` callable",
"title": "Kwargs",
"type": "object"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used.\nIf `depencencies` is specified it should include pytorch and the verison has to match.\n(`dependencies` overrules `pytorch_version`)"
}
},
"required": [
"source",
"architecture"
],
"title": "model.v0_4.PytorchStateDictWeightsDescr",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"RunMode": {
"additionalProperties": false,
"properties": {
"name": {
"anyOf": [
{
"const": "deepimagej",
"type": "string"
},
{
"type": "string"
}
],
"description": "Run mode name",
"title": "Name"
},
"kwargs": {
"additionalProperties": true,
"description": "Run mode specific key word arguments",
"title": "Kwargs",
"type": "object"
}
},
"required": [
"name"
],
"title": "model.v0_4.RunMode",
"type": "object"
},
"ScaleLinearDescr": {
"additionalProperties": false,
"description": "Fixed linear scaling.",
"properties": {
"name": {
"const": "scale_linear",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleLinearKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleLinearDescr",
"type": "object"
},
"ScaleLinearKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleLinearDescr`",
"properties": {
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to scale the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"gain": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 1.0,
"description": "multiplicative factor",
"title": "Gain"
},
"offset": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 0.0,
"description": "additive term",
"title": "Offset"
}
},
"title": "model.v0_4.ScaleLinearKwargs",
"type": "object"
},
"ScaleMeanVarianceDescr": {
"additionalProperties": false,
"description": "Scale the tensor s.t. its mean and variance match a reference tensor.",
"properties": {
"name": {
"const": "scale_mean_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleMeanVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleMeanVarianceDescr",
"type": "object"
},
"ScaleMeanVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleMeanVarianceDescr`",
"properties": {
"mode": {
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"reference_tensor": {
"description": "Name of tensor to match.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to normalize the two image axes for 2d data jointly.\nDefault: scale all non-batch axes jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability:\n\"`out = (tensor - mean) / (std + eps) * (ref_std + eps) + ref_mean.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"mode",
"reference_tensor"
],
"title": "model.v0_4.ScaleMeanVarianceKwargs",
"type": "object"
},
"ScaleRangeDescr": {
"additionalProperties": false,
"description": "Scale with percentiles.",
"properties": {
"name": {
"const": "scale_range",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleRangeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleRangeDescr",
"type": "object"
},
"ScaleRangeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleRangeDescr`\n\nFor `min_percentile`=0.0 (the default) and `max_percentile`=100 (the default)\nthis processing step normalizes data to the [0, 1] intervall.\nFor other percentiles the normalized values will partially be outside the [0, 1]\nintervall. Use `ScaleRange` followed by `ClipDescr` if you want to limit the\nnormalized values to a range.",
"properties": {
"mode": {
"description": "Mode for computing percentiles.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | compute for the entire dataset |\n| per_sample | compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example xy to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"min_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 0.0,
"description": "The lower percentile used to determine the value to align with zero.",
"ge": 0,
"lt": 100,
"title": "Min Percentile"
},
"max_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 100.0,
"description": "The upper percentile used to determine the value to align with one.\nHas to be bigger than `min_percentile`.\nThe range is 1 to 100 instead of 0 to 100 to avoid mistakenly\naccepting percentiles specified in the range 0.0 to 1.0.",
"gt": 1,
"le": 100,
"title": "Max Percentile"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability.\n`out = (tensor - v_lower) / (v_upper - v_lower + eps)`;\nwith `v_lower,v_upper` values at the respective percentiles.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
},
"reference_tensor": {
"anyOf": [
{
"minLength": 1,
"title": "TensorName",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Tensor name to compute the percentiles from. Default: The tensor itself.\nFor any tensor in `inputs` only input tensor references are allowed.\nFor a tensor in `outputs` only input tensor refereences are allowed if `mode: per_dataset`",
"title": "Reference Tensor"
}
},
"required": [
"mode",
"axes"
],
"title": "model.v0_4.ScaleRangeKwargs",
"type": "object"
},
"SigmoidDescr": {
"additionalProperties": false,
"description": "The logistic sigmoid funciton, a.k.a. expit function.",
"properties": {
"name": {
"const": "sigmoid",
"title": "Name",
"type": "string"
}
},
"required": [
"name"
],
"title": "model.v0_4.SigmoidDescr",
"type": "object"
},
"TensorflowJsWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The multi-file weights.\nAll required files/folders should be a zip archive.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowJsWeightsDescr",
"type": "object"
},
"TensorflowSavedModelBundleWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowSavedModelBundleWeightsDescr",
"type": "object"
},
"TorchscriptWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TorchscriptWeightsDescr",
"type": "object"
},
"Uploader": {
"additionalProperties": false,
"properties": {
"email": {
"description": "Email",
"format": "email",
"title": "Email",
"type": "string"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "name",
"title": "Name"
}
},
"required": [
"email"
],
"title": "generic.v0_2.Uploader",
"type": "object"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
},
"WeightsDescr": {
"additionalProperties": false,
"properties": {
"keras_hdf5": {
"anyOf": [
{
"$ref": "#/$defs/KerasHdf5WeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"onnx": {
"anyOf": [
{
"$ref": "#/$defs/OnnxWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"pytorch_state_dict": {
"anyOf": [
{
"$ref": "#/$defs/PytorchStateDictWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"tensorflow_js": {
"anyOf": [
{
"$ref": "#/$defs/TensorflowJsWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"tensorflow_saved_model_bundle": {
"anyOf": [
{
"$ref": "#/$defs/TensorflowSavedModelBundleWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"torchscript": {
"anyOf": [
{
"$ref": "#/$defs/TorchscriptWeightsDescr"
},
{
"type": "null"
}
],
"default": null
}
},
"title": "model.v0_4.WeightsDescr",
"type": "object"
},
"YamlValue": {
"anyOf": [
{
"type": "boolean"
},
{
"format": "date",
"type": "string"
},
{
"format": "date-time",
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
},
{
"type": "string"
},
{
"items": {
"$ref": "#/$defs/YamlValue"
},
"type": "array"
},
{
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"type": "object"
},
{
"type": "null"
}
]
},
"ZeroMeanUnitVarianceDescr": {
"additionalProperties": false,
"description": "Subtract mean and divide by variance.",
"properties": {
"name": {
"const": "zero_mean_unit_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ZeroMeanUnitVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ZeroMeanUnitVarianceDescr",
"type": "object"
},
"ZeroMeanUnitVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ZeroMeanUnitVarianceDescr`",
"properties": {
"mode": {
"default": "fixed",
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| fixed | Fixed values for mean and variance |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"fixed",
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example `xy` to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"mean": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The mean value(s) to use for `mode: fixed`.\nFor example `[1.1, 2.2, 3.3]` in the case of a 3 channel image with `axes: xy`.",
"examples": [
[
1.1,
2.2,
3.3
]
],
"title": "Mean"
},
"std": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The standard deviation values to use for `mode: fixed`. Analogous to mean.",
"examples": [
[
0.1,
0.2,
0.3
]
],
"title": "Std"
},
"eps": {
"default": 1e-06,
"description": "epsilon for numeric stability: `out = (tensor - mean) / (std + eps)`.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"axes"
],
"title": "model.v0_4.ZeroMeanUnitVarianceKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Specification of the fields used in a bioimage.io-compliant RDF that describes AI models with pretrained weights.\n\nThese fields are typically stored in a YAML file which we call a model resource description file (model RDF).",
"properties": {
"name": {
"description": "A human-readable name of this model.\nIt should be no longer than 64 characters and only contain letter, number, underscore, minus or space characters.",
"minLength": 1,
"title": "Name",
"type": "string"
},
"description": {
"title": "Description",
"type": "string"
},
"covers": {
"description": "Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.\nThe supported image formats are: ('.gif', '.jpeg', '.jpg', '.png', '.svg', '.tif', '.tiff')",
"examples": [
[
"cover.png"
]
],
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Covers",
"type": "array"
},
"id_emoji": {
"anyOf": [
{
"examples": [
"\ud83e\udd88",
"\ud83e\udda5"
],
"maxLength": 1,
"minLength": 1,
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "UTF-8 emoji for display alongside the `id`.",
"title": "Id Emoji"
},
"authors": {
"description": "The authors are the creators of the model RDF and the primary points of contact.",
"items": {
"$ref": "#/$defs/Author"
},
"minItems": 1,
"title": "Authors",
"type": "array"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "file and other attachments"
},
"cite": {
"description": "citations",
"items": {
"$ref": "#/$defs/CiteEntry"
},
"title": "Cite",
"type": "array"
},
"config": {
"additionalProperties": {
"$ref": "#/$defs/YamlValue"
},
"description": "A field for custom configuration that can contain any keys not present in the RDF spec.\nThis means you should not store, for example, a github repo URL in `config` since we already have the\n`git_repo` field defined in the spec.\nKeys in `config` may be very specific to a tool or consumer software. To avoid conflicting definitions,\nit is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,\nfor example:\n```yaml\nconfig:\n bioimageio: # here is the domain name\n my_custom_key: 3837283\n another_key:\n nested: value\n imagej: # config specific to ImageJ\n macro_dir: path/to/macro/file\n```\nIf possible, please use [`snake_case`](https://en.wikipedia.org/wiki/Snake_case) for keys in `config`.\nYou may want to list linked files additionally under `attachments` to include them when packaging a resource\n(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains\nan altered rdf.yaml file with local references to the downloaded files)",
"examples": [
{
"bioimageio": {
"another_key": {
"nested": "value"
},
"my_custom_key": 3837283
},
"imagej": {
"macro_dir": "path/to/macro/file"
}
}
],
"title": "Config",
"type": "object"
},
"download_url": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "URL to download the resource from (deprecated)",
"title": "Download Url"
},
"git_repo": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "A URL to the Git repository where the resource is being developed.",
"examples": [
"https://github.com/bioimage-io/spec-bioimage-io/tree/main/example_descriptions/models/unet2d_nuclei_broad"
],
"title": "Git Repo"
},
"icon": {
"anyOf": [
{
"maxLength": 2,
"minLength": 1,
"type": "string"
},
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An icon for illustration",
"title": "Icon"
},
"links": {
"description": "IDs of other bioimage.io resources",
"examples": [
[
"ilastik/ilastik",
"deepimagej/deepimagej",
"zero/notebook_u-net_3d_zerocostdl4mic"
]
],
"items": {
"type": "string"
},
"title": "Links",
"type": "array"
},
"uploader": {
"anyOf": [
{
"$ref": "#/$defs/Uploader"
},
{
"type": "null"
}
],
"default": null,
"description": "The person who uploaded the model (e.g. to bioimage.io)"
},
"maintainers": {
"description": "Maintainers of this resource.\nIf not specified `authors` are maintainers and at least some of them should specify their `github_user` name",
"items": {
"$ref": "#/$defs/Maintainer"
},
"title": "Maintainers",
"type": "array"
},
"rdf_source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from.\nDo not set this field in a YAML file.",
"title": "Rdf Source"
},
"tags": {
"description": "Associated tags",
"examples": [
[
"unet2d",
"pytorch",
"nucleus",
"segmentation",
"dsb2018"
]
],
"items": {
"type": "string"
},
"title": "Tags",
"type": "array"
},
"version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "The version of the resource following SemVer 2.0."
},
"version_number": {
"anyOf": [
{
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "version number (n-th published version, not the semantic version)",
"title": "Version Number"
},
"format_version": {
"const": "0.4.10",
"description": "Version of the bioimage.io model description specification used.\nWhen creating a new model always use the latest micro/patch version described here.\nThe `format_version` is important for any consumer software to understand how to parse the fields.",
"title": "Format Version",
"type": "string"
},
"type": {
"const": "model",
"description": "Specialized resource type 'model'",
"title": "Type",
"type": "string"
},
"id": {
"anyOf": [
{
"minLength": 1,
"title": "ModelId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "bioimage.io-wide unique resource identifier\nassigned by bioimage.io; version **un**specific.",
"title": "Id"
},
"documentation": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "URL or relative path to a markdown file with additional documentation.\nThe recommended documentation file name is `README.md`. An `.md` suffix is mandatory.\nThe documentation should include a '[#[#]]# Validation' (sub)section\nwith details on how to quantitatively validate the model on unseen data.",
"examples": [
"https://raw.githubusercontent.com/bioimage-io/spec-bioimage-io/main/example_descriptions/models/unet2d_nuclei_broad/README.md",
"README.md"
],
"title": "Documentation"
},
"inputs": {
"description": "Describes the input tensors expected by this model.",
"items": {
"$ref": "#/$defs/InputTensorDescr"
},
"minItems": 1,
"title": "Inputs",
"type": "array"
},
"license": {
"anyOf": [
{
"enum": [
"0BSD",
"AAL",
"Abstyles",
"AdaCore-doc",
"Adobe-2006",
"Adobe-Display-PostScript",
"Adobe-Glyph",
"Adobe-Utopia",
"ADSL",
"AFL-1.1",
"AFL-1.2",
"AFL-2.0",
"AFL-2.1",
"AFL-3.0",
"Afmparse",
"AGPL-1.0-only",
"AGPL-1.0-or-later",
"AGPL-3.0-only",
"AGPL-3.0-or-later",
"Aladdin",
"AMDPLPA",
"AML",
"AML-glslang",
"AMPAS",
"ANTLR-PD",
"ANTLR-PD-fallback",
"Apache-1.0",
"Apache-1.1",
"Apache-2.0",
"APAFML",
"APL-1.0",
"App-s2p",
"APSL-1.0",
"APSL-1.1",
"APSL-1.2",
"APSL-2.0",
"Arphic-1999",
"Artistic-1.0",
"Artistic-1.0-cl8",
"Artistic-1.0-Perl",
"Artistic-2.0",
"ASWF-Digital-Assets-1.0",
"ASWF-Digital-Assets-1.1",
"Baekmuk",
"Bahyph",
"Barr",
"bcrypt-Solar-Designer",
"Beerware",
"Bitstream-Charter",
"Bitstream-Vera",
"BitTorrent-1.0",
"BitTorrent-1.1",
"blessing",
"BlueOak-1.0.0",
"Boehm-GC",
"Borceux",
"Brian-Gladman-2-Clause",
"Brian-Gladman-3-Clause",
"BSD-1-Clause",
"BSD-2-Clause",
"BSD-2-Clause-Darwin",
"BSD-2-Clause-Patent",
"BSD-2-Clause-Views",
"BSD-3-Clause",
"BSD-3-Clause-acpica",
"BSD-3-Clause-Attribution",
"BSD-3-Clause-Clear",
"BSD-3-Clause-flex",
"BSD-3-Clause-HP",
"BSD-3-Clause-LBNL",
"BSD-3-Clause-Modification",
"BSD-3-Clause-No-Military-License",
"BSD-3-Clause-No-Nuclear-License",
"BSD-3-Clause-No-Nuclear-License-2014",
"BSD-3-Clause-No-Nuclear-Warranty",
"BSD-3-Clause-Open-MPI",
"BSD-3-Clause-Sun",
"BSD-4-Clause",
"BSD-4-Clause-Shortened",
"BSD-4-Clause-UC",
"BSD-4.3RENO",
"BSD-4.3TAHOE",
"BSD-Advertising-Acknowledgement",
"BSD-Attribution-HPND-disclaimer",
"BSD-Inferno-Nettverk",
"BSD-Protection",
"BSD-Source-beginning-file",
"BSD-Source-Code",
"BSD-Systemics",
"BSD-Systemics-W3Works",
"BSL-1.0",
"BUSL-1.1",
"bzip2-1.0.6",
"C-UDA-1.0",
"CAL-1.0",
"CAL-1.0-Combined-Work-Exception",
"Caldera",
"Caldera-no-preamble",
"CATOSL-1.1",
"CC-BY-1.0",
"CC-BY-2.0",
"CC-BY-2.5",
"CC-BY-2.5-AU",
"CC-BY-3.0",
"CC-BY-3.0-AT",
"CC-BY-3.0-AU",
"CC-BY-3.0-DE",
"CC-BY-3.0-IGO",
"CC-BY-3.0-NL",
"CC-BY-3.0-US",
"CC-BY-4.0",
"CC-BY-NC-1.0",
"CC-BY-NC-2.0",
"CC-BY-NC-2.5",
"CC-BY-NC-3.0",
"CC-BY-NC-3.0-DE",
"CC-BY-NC-4.0",
"CC-BY-NC-ND-1.0",
"CC-BY-NC-ND-2.0",
"CC-BY-NC-ND-2.5",
"CC-BY-NC-ND-3.0",
"CC-BY-NC-ND-3.0-DE",
"CC-BY-NC-ND-3.0-IGO",
"CC-BY-NC-ND-4.0",
"CC-BY-NC-SA-1.0",
"CC-BY-NC-SA-2.0",
"CC-BY-NC-SA-2.0-DE",
"CC-BY-NC-SA-2.0-FR",
"CC-BY-NC-SA-2.0-UK",
"CC-BY-NC-SA-2.5",
"CC-BY-NC-SA-3.0",
"CC-BY-NC-SA-3.0-DE",
"CC-BY-NC-SA-3.0-IGO",
"CC-BY-NC-SA-4.0",
"CC-BY-ND-1.0",
"CC-BY-ND-2.0",
"CC-BY-ND-2.5",
"CC-BY-ND-3.0",
"CC-BY-ND-3.0-DE",
"CC-BY-ND-4.0",
"CC-BY-SA-1.0",
"CC-BY-SA-2.0",
"CC-BY-SA-2.0-UK",
"CC-BY-SA-2.1-JP",
"CC-BY-SA-2.5",
"CC-BY-SA-3.0",
"CC-BY-SA-3.0-AT",
"CC-BY-SA-3.0-DE",
"CC-BY-SA-3.0-IGO",
"CC-BY-SA-4.0",
"CC-PDDC",
"CC0-1.0",
"CDDL-1.0",
"CDDL-1.1",
"CDL-1.0",
"CDLA-Permissive-1.0",
"CDLA-Permissive-2.0",
"CDLA-Sharing-1.0",
"CECILL-1.0",
"CECILL-1.1",
"CECILL-2.0",
"CECILL-2.1",
"CECILL-B",
"CECILL-C",
"CERN-OHL-1.1",
"CERN-OHL-1.2",
"CERN-OHL-P-2.0",
"CERN-OHL-S-2.0",
"CERN-OHL-W-2.0",
"CFITSIO",
"check-cvs",
"checkmk",
"ClArtistic",
"Clips",
"CMU-Mach",
"CMU-Mach-nodoc",
"CNRI-Jython",
"CNRI-Python",
"CNRI-Python-GPL-Compatible",
"COIL-1.0",
"Community-Spec-1.0",
"Condor-1.1",
"copyleft-next-0.3.0",
"copyleft-next-0.3.1",
"Cornell-Lossless-JPEG",
"CPAL-1.0",
"CPL-1.0",
"CPOL-1.02",
"Cronyx",
"Crossword",
"CrystalStacker",
"CUA-OPL-1.0",
"Cube",
"curl",
"D-FSL-1.0",
"DEC-3-Clause",
"diffmark",
"DL-DE-BY-2.0",
"DL-DE-ZERO-2.0",
"DOC",
"Dotseqn",
"DRL-1.0",
"DRL-1.1",
"DSDP",
"dtoa",
"dvipdfm",
"ECL-1.0",
"ECL-2.0",
"EFL-1.0",
"EFL-2.0",
"eGenix",
"Elastic-2.0",
"Entessa",
"EPICS",
"EPL-1.0",
"EPL-2.0",
"ErlPL-1.1",
"etalab-2.0",
"EUDatagrid",
"EUPL-1.0",
"EUPL-1.1",
"EUPL-1.2",
"Eurosym",
"Fair",
"FBM",
"FDK-AAC",
"Ferguson-Twofish",
"Frameworx-1.0",
"FreeBSD-DOC",
"FreeImage",
"FSFAP",
"FSFAP-no-warranty-disclaimer",
"FSFUL",
"FSFULLR",
"FSFULLRWD",
"FTL",
"Furuseth",
"fwlw",
"GCR-docs",
"GD",
"GFDL-1.1-invariants-only",
"GFDL-1.1-invariants-or-later",
"GFDL-1.1-no-invariants-only",
"GFDL-1.1-no-invariants-or-later",
"GFDL-1.1-only",
"GFDL-1.1-or-later",
"GFDL-1.2-invariants-only",
"GFDL-1.2-invariants-or-later",
"GFDL-1.2-no-invariants-only",
"GFDL-1.2-no-invariants-or-later",
"GFDL-1.2-only",
"GFDL-1.2-or-later",
"GFDL-1.3-invariants-only",
"GFDL-1.3-invariants-or-later",
"GFDL-1.3-no-invariants-only",
"GFDL-1.3-no-invariants-or-later",
"GFDL-1.3-only",
"GFDL-1.3-or-later",
"Giftware",
"GL2PS",
"Glide",
"Glulxe",
"GLWTPL",
"gnuplot",
"GPL-1.0-only",
"GPL-1.0-or-later",
"GPL-2.0-only",
"GPL-2.0-or-later",
"GPL-3.0-only",
"GPL-3.0-or-later",
"Graphics-Gems",
"gSOAP-1.3b",
"gtkbook",
"HaskellReport",
"hdparm",
"Hippocratic-2.1",
"HP-1986",
"HP-1989",
"HPND",
"HPND-DEC",
"HPND-doc",
"HPND-doc-sell",
"HPND-export-US",
"HPND-export-US-modify",
"HPND-Fenneberg-Livingston",
"HPND-INRIA-IMAG",
"HPND-Kevlin-Henney",
"HPND-Markus-Kuhn",
"HPND-MIT-disclaimer",
"HPND-Pbmplus",
"HPND-sell-MIT-disclaimer-xserver",
"HPND-sell-regexpr",
"HPND-sell-variant",
"HPND-sell-variant-MIT-disclaimer",
"HPND-UC",
"HTMLTIDY",
"IBM-pibs",
"ICU",
"IEC-Code-Components-EULA",
"IJG",
"IJG-short",
"ImageMagick",
"iMatix",
"Imlib2",
"Info-ZIP",
"Inner-Net-2.0",
"Intel",
"Intel-ACPI",
"Interbase-1.0",
"IPA",
"IPL-1.0",
"ISC",
"ISC-Veillard",
"Jam",
"JasPer-2.0",
"JPL-image",
"JPNIC",
"JSON",
"Kastrup",
"Kazlib",
"Knuth-CTAN",
"LAL-1.2",
"LAL-1.3",
"Latex2e",
"Latex2e-translated-notice",
"Leptonica",
"LGPL-2.0-only",
"LGPL-2.0-or-later",
"LGPL-2.1-only",
"LGPL-2.1-or-later",
"LGPL-3.0-only",
"LGPL-3.0-or-later",
"LGPLLR",
"Libpng",
"libpng-2.0",
"libselinux-1.0",
"libtiff",
"libutil-David-Nugent",
"LiLiQ-P-1.1",
"LiLiQ-R-1.1",
"LiLiQ-Rplus-1.1",
"Linux-man-pages-1-para",
"Linux-man-pages-copyleft",
"Linux-man-pages-copyleft-2-para",
"Linux-man-pages-copyleft-var",
"Linux-OpenIB",
"LOOP",
"LPD-document",
"LPL-1.0",
"LPL-1.02",
"LPPL-1.0",
"LPPL-1.1",
"LPPL-1.2",
"LPPL-1.3a",
"LPPL-1.3c",
"lsof",
"Lucida-Bitmap-Fonts",
"LZMA-SDK-9.11-to-9.20",
"LZMA-SDK-9.22",
"Mackerras-3-Clause",
"Mackerras-3-Clause-acknowledgment",
"magaz",
"mailprio",
"MakeIndex",
"Martin-Birgmeier",
"McPhee-slideshow",
"metamail",
"Minpack",
"MirOS",
"MIT",
"MIT-0",
"MIT-advertising",
"MIT-CMU",
"MIT-enna",
"MIT-feh",
"MIT-Festival",
"MIT-Modern-Variant",
"MIT-open-group",
"MIT-testregex",
"MIT-Wu",
"MITNFA",
"MMIXware",
"Motosoto",
"MPEG-SSG",
"mpi-permissive",
"mpich2",
"MPL-1.0",
"MPL-1.1",
"MPL-2.0",
"MPL-2.0-no-copyleft-exception",
"mplus",
"MS-LPL",
"MS-PL",
"MS-RL",
"MTLL",
"MulanPSL-1.0",
"MulanPSL-2.0",
"Multics",
"Mup",
"NAIST-2003",
"NASA-1.3",
"Naumen",
"NBPL-1.0",
"NCGL-UK-2.0",
"NCSA",
"Net-SNMP",
"NetCDF",
"Newsletr",
"NGPL",
"NICTA-1.0",
"NIST-PD",
"NIST-PD-fallback",
"NIST-Software",
"NLOD-1.0",
"NLOD-2.0",
"NLPL",
"Nokia",
"NOSL",
"Noweb",
"NPL-1.0",
"NPL-1.1",
"NPOSL-3.0",
"NRL",
"NTP",
"NTP-0",
"O-UDA-1.0",
"OCCT-PL",
"OCLC-2.0",
"ODbL-1.0",
"ODC-By-1.0",
"OFFIS",
"OFL-1.0",
"OFL-1.0-no-RFN",
"OFL-1.0-RFN",
"OFL-1.1",
"OFL-1.1-no-RFN",
"OFL-1.1-RFN",
"OGC-1.0",
"OGDL-Taiwan-1.0",
"OGL-Canada-2.0",
"OGL-UK-1.0",
"OGL-UK-2.0",
"OGL-UK-3.0",
"OGTSL",
"OLDAP-1.1",
"OLDAP-1.2",
"OLDAP-1.3",
"OLDAP-1.4",
"OLDAP-2.0",
"OLDAP-2.0.1",
"OLDAP-2.1",
"OLDAP-2.2",
"OLDAP-2.2.1",
"OLDAP-2.2.2",
"OLDAP-2.3",
"OLDAP-2.4",
"OLDAP-2.5",
"OLDAP-2.6",
"OLDAP-2.7",
"OLDAP-2.8",
"OLFL-1.3",
"OML",
"OpenPBS-2.3",
"OpenSSL",
"OpenSSL-standalone",
"OpenVision",
"OPL-1.0",
"OPL-UK-3.0",
"OPUBL-1.0",
"OSET-PL-2.1",
"OSL-1.0",
"OSL-1.1",
"OSL-2.0",
"OSL-2.1",
"OSL-3.0",
"PADL",
"Parity-6.0.0",
"Parity-7.0.0",
"PDDL-1.0",
"PHP-3.0",
"PHP-3.01",
"Pixar",
"Plexus",
"pnmstitch",
"PolyForm-Noncommercial-1.0.0",
"PolyForm-Small-Business-1.0.0",
"PostgreSQL",
"PSF-2.0",
"psfrag",
"psutils",
"Python-2.0",
"Python-2.0.1",
"python-ldap",
"Qhull",
"QPL-1.0",
"QPL-1.0-INRIA-2004",
"radvd",
"Rdisc",
"RHeCos-1.1",
"RPL-1.1",
"RPL-1.5",
"RPSL-1.0",
"RSA-MD",
"RSCPL",
"Ruby",
"SAX-PD",
"SAX-PD-2.0",
"Saxpath",
"SCEA",
"SchemeReport",
"Sendmail",
"Sendmail-8.23",
"SGI-B-1.0",
"SGI-B-1.1",
"SGI-B-2.0",
"SGI-OpenGL",
"SGP4",
"SHL-0.5",
"SHL-0.51",
"SimPL-2.0",
"SISSL",
"SISSL-1.2",
"SL",
"Sleepycat",
"SMLNJ",
"SMPPL",
"SNIA",
"snprintf",
"softSurfer",
"Soundex",
"Spencer-86",
"Spencer-94",
"Spencer-99",
"SPL-1.0",
"ssh-keyscan",
"SSH-OpenSSH",
"SSH-short",
"SSLeay-standalone",
"SSPL-1.0",
"SugarCRM-1.1.3",
"Sun-PPP",
"SunPro",
"SWL",
"swrule",
"Symlinks",
"TAPR-OHL-1.0",
"TCL",
"TCP-wrappers",
"TermReadKey",
"TGPPL-1.0",
"TMate",
"TORQUE-1.1",
"TOSL",
"TPDL",
"TPL-1.0",
"TTWL",
"TTYP0",
"TU-Berlin-1.0",
"TU-Berlin-2.0",
"UCAR",
"UCL-1.0",
"ulem",
"UMich-Merit",
"Unicode-3.0",
"Unicode-DFS-2015",
"Unicode-DFS-2016",
"Unicode-TOU",
"UnixCrypt",
"Unlicense",
"UPL-1.0",
"URT-RLE",
"Vim",
"VOSTROM",
"VSL-1.0",
"W3C",
"W3C-19980720",
"W3C-20150513",
"w3m",
"Watcom-1.0",
"Widget-Workshop",
"Wsuipa",
"WTFPL",
"X11",
"X11-distribute-modifications-variant",
"Xdebug-1.03",
"Xerox",
"Xfig",
"XFree86-1.1",
"xinetd",
"xkeyboard-config-Zinoviev",
"xlock",
"Xnet",
"xpp",
"XSkat",
"YPL-1.0",
"YPL-1.1",
"Zed",
"Zeeff",
"Zend-2.0",
"Zimbra-1.3",
"Zimbra-1.4",
"Zlib",
"zlib-acknowledgement",
"ZPL-1.1",
"ZPL-2.0",
"ZPL-2.1"
],
"title": "LicenseId",
"type": "string"
},
{
"type": "string"
}
],
"description": "A [SPDX license identifier](https://spdx.org/licenses/).\nWe do notsupport custom license beyond the SPDX license list, if you need that please\n[open a GitHub issue](https://github.com/bioimage-io/spec-bioimage-io/issues/new/choose\n) to discuss your intentions with the community.",
"examples": [
"CC0-1.0",
"MIT",
"BSD-2-Clause"
],
"title": "License"
},
"outputs": {
"description": "Describes the output tensors.",
"items": {
"$ref": "#/$defs/OutputTensorDescr"
},
"minItems": 1,
"title": "Outputs",
"type": "array"
},
"packaged_by": {
"description": "The persons that have packaged and uploaded this model.\nOnly required if those persons differ from the `authors`.",
"items": {
"$ref": "#/$defs/Author"
},
"title": "Packaged By",
"type": "array"
},
"parent": {
"anyOf": [
{
"$ref": "#/$defs/LinkedModel"
},
{
"type": "null"
}
],
"default": null,
"description": "The model from which this model is derived, e.g. by fine-tuning the weights."
},
"run_mode": {
"anyOf": [
{
"$ref": "#/$defs/RunMode"
},
{
"type": "null"
}
],
"default": null,
"description": "Custom run mode for this model: for more complex prediction procedures like test time\ndata augmentation that currently cannot be expressed in the specification.\nNo standard run modes are defined yet."
},
"sample_inputs": {
"description": "URLs/relative paths to sample inputs to illustrate possible inputs for the model,\nfor example stored as PNG or TIFF images.\nThe sample files primarily serve to inform a human user about an example use case",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Sample Inputs",
"type": "array"
},
"sample_outputs": {
"description": "URLs/relative paths to sample outputs corresponding to the `sample_inputs`.",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Sample Outputs",
"type": "array"
},
"test_inputs": {
"description": "Test input tensors compatible with the `inputs` description for a **single test case**.\nThis means if your model has more than one input, you should provide one URL/relative path for each input.\nEach test input should be a file with an ndarray in\n[numpy.lib file format](https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#module-numpy.lib.format).\nThe extension must be '.npy'.",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"minItems": 1,
"title": "Test Inputs",
"type": "array"
},
"test_outputs": {
"description": "Analog to `test_inputs`.",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"minItems": 1,
"title": "Test Outputs",
"type": "array"
},
"timestamp": {
"$ref": "#/$defs/Datetime"
},
"training_data": {
"anyOf": [
{
"$ref": "#/$defs/LinkedDataset"
},
{
"$ref": "#/$defs/DatasetDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "The dataset used to train this model",
"title": "Training Data"
},
"weights": {
"$ref": "#/$defs/WeightsDescr",
"description": "The weights for this model.\nWeights can be given for different formats, but should otherwise be equivalent.\nThe available weight formats determine which consumers can use this model."
}
},
"required": [
"name",
"description",
"authors",
"format_version",
"type",
"documentation",
"inputs",
"license",
"outputs",
"test_inputs",
"test_outputs",
"timestamp",
"weights"
],
"title": "model 0.4.10",
"type": "object"
}
Fields:
-
_validation_summary(Optional[ValidationSummary]) -
_root(Union[RootHttpUrl, DirectoryPath, ZipFile]) -
_file_name(Optional[FileName]) -
description(str) -
covers(List[FileSource_cover]) -
id_emoji(Optional[str]) -
attachments(Optional[AttachmentsDescr]) -
cite(List[CiteEntry]) -
config(Dict[str, YamlValue]) -
download_url(Optional[HttpUrl]) -
git_repo(Optional[str]) -
icon(Union[str, FileSource, None]) -
links(List[str]) -
uploader(Optional[Uploader]) -
maintainers(List[Maintainer]) -
rdf_source(Optional[FileSource]) -
tags(List[str]) -
version(Optional[Version]) -
version_number(Optional[int]) -
format_version(Literal['0.4.10']) -
type(Literal['model']) -
id(Optional[ModelId]) -
authors(NotEmpty[List[Author]]) -
documentation(FileSource_) -
inputs(NotEmpty[List[InputTensorDescr]]) -
license(Union[LicenseId, str]) -
name(str) -
outputs(NotEmpty[List[OutputTensorDescr]]) -
packaged_by(List[Author]) -
parent(Optional[LinkedModel]) -
run_mode(Optional[RunMode]) -
sample_inputs(List[FileSource_]) -
sample_outputs(List[FileSource_]) -
test_inputs(NotEmpty[List[FileSource_]]) -
test_outputs(NotEmpty[List[FileSource_]]) -
timestamp(Datetime) -
training_data(Union[LinkedDataset, DatasetDescr, None]) -
weights(WeightsDescr)
Validators:
-
unique_tensor_descr_names→inputs,outputs -
unique_io_names -
minimum_shape2valid_output -
validate_tensor_references_in_inputs -
validate_tensor_references_in_outputs -
ignore_url_parent→parent -
_convert_from_older_format
attachments
pydantic-field
¤
attachments: Optional[AttachmentsDescr] = None
file and other attachments
authors
pydantic-field
¤
The authors are the creators of the model RDF and the primary points of contact.
config
pydantic-field
¤
config: Dict[str, YamlValue]
A field for custom configuration that can contain any keys not present in the RDF spec.
This means you should not store, for example, a github repo URL in config since we already have the
git_repo field defined in the spec.
Keys in config may be very specific to a tool or consumer software. To avoid conflicting definitions,
it is recommended to wrap added configuration into a sub-field named with the specific domain or tool name,
for example:
config:
bioimageio: # here is the domain name
my_custom_key: 3837283
another_key:
nested: value
imagej: # config specific to ImageJ
macro_dir: path/to/macro/file
snake_case for keys in config.
You may want to list linked files additionally under attachments to include them when packaging a resource
(packaging a resource means downloading/copying important linked files and creating a ZIP archive that contains
an altered rdf.yaml file with local references to the downloaded files)
covers
pydantic-field
¤
covers: List[FileSource_cover]
Cover images. Please use an image smaller than 500KB and an aspect ratio width to height of 2:1.
documentation
pydantic-field
¤
documentation: FileSource_
URL or relative path to a markdown file with additional documentation.
The recommended documentation file name is README.md. An .md suffix is mandatory.
The documentation should include a '[#[#]]# Validation' (sub)section
with details on how to quantitatively validate the model on unseen data.
download_url
pydantic-field
¤
download_url: Optional[HttpUrl] = None
URL to download the resource from (deprecated)
file_name
property
¤
file_name: Optional[FileName]
File name of the bioimageio.yaml file the description was loaded from.
git_repo
pydantic-field
¤
git_repo: Optional[str] = None
A URL to the Git repository where the resource is being developed.
id
pydantic-field
¤
id: Optional[ModelId] = None
bioimage.io-wide unique resource identifier assigned by bioimage.io; version unspecific.
implemented_format_version
class-attribute
¤
implemented_format_version: Literal['0.4.10'] = '0.4.10'
implemented_format_version_tuple
class-attribute
¤
implemented_format_version_tuple: Tuple[int, int, int]
inputs
pydantic-field
¤
inputs: NotEmpty[List[InputTensorDescr]]
Describes the input tensors expected by this model.
license
pydantic-field
¤
license: Union[LicenseId, str]
A SPDX license identifier. We do notsupport custom license beyond the SPDX license list, if you need that please open a GitHub issue to discuss your intentions with the community.
maintainers
pydantic-field
¤
maintainers: List[Maintainer]
Maintainers of this resource.
If not specified authors are maintainers and at least some of them should specify their github_user name
name
pydantic-field
¤
name: str
A human-readable name of this model. It should be no longer than 64 characters and only contain letter, number, underscore, minus or space characters.
packaged_by
pydantic-field
¤
packaged_by: List[Author]
The persons that have packaged and uploaded this model.
Only required if those persons differ from the authors.
parent
pydantic-field
¤
parent: Optional[LinkedModel] = None
The model from which this model is derived, e.g. by fine-tuning the weights.
rdf_source
pydantic-field
¤
rdf_source: Optional[FileSource] = None
Resource description file (RDF) source; used to keep track of where an rdf.yaml was loaded from. Do not set this field in a YAML file.
root
property
¤
root: Union[RootHttpUrl, DirectoryPath, ZipFile]
The URL/Path prefix to resolve any relative paths with.
run_mode
pydantic-field
¤
run_mode: Optional[RunMode] = None
Custom run mode for this model: for more complex prediction procedures like test time data augmentation that currently cannot be expressed in the specification. No standard run modes are defined yet.
sample_inputs
pydantic-field
¤
sample_inputs: List[FileSource_]
URLs/relative paths to sample inputs to illustrate possible inputs for the model, for example stored as PNG or TIFF images. The sample files primarily serve to inform a human user about an example use case
sample_outputs
pydantic-field
¤
sample_outputs: List[FileSource_]
URLs/relative paths to sample outputs corresponding to the sample_inputs.
test_inputs
pydantic-field
¤
test_inputs: NotEmpty[List[FileSource_]]
Test input tensors compatible with the inputs description for a single test case.
This means if your model has more than one input, you should provide one URL/relative path for each input.
Each test input should be a file with an ndarray in
numpy.lib file format.
The extension must be '.npy'.
training_data
pydantic-field
¤
training_data: Union[LinkedDataset, DatasetDescr, None] = (
None
)
The dataset used to train this model
uploader
pydantic-field
¤
uploader: Optional[Uploader] = None
The person who uploaded the model (e.g. to bioimage.io)
version
pydantic-field
¤
version: Optional[Version] = None
The version of the resource following SemVer 2.0.
version_number
pydantic-field
¤
version_number: Optional[int] = None
version number (n-th published version, not the semantic version)
weights
pydantic-field
¤
weights: WeightsDescr
The weights for this model. Weights can be given for different formats, but should otherwise be equivalent. The available weight formats determine which consumers can use this model.
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any)
Source code in src/bioimageio/spec/_internal/common_nodes.py
199 200 201 202 203 204 205 206 207 208 209 210 211 | |
accept_author_strings
classmethod
¤
accept_author_strings(
authors: Union[Any, Sequence[Any]],
) -> Any
we unofficially accept strings as author entries
Source code in src/bioimageio/spec/generic/v0_2.py
245 246 247 248 249 250 251 252 253 254 255 | |
get_input_test_arrays
¤
get_input_test_arrays() -> List[NDArray[Any]]
Source code in src/bioimageio/spec/model/v0_4.py
1352 1353 1354 1355 | |
get_output_test_arrays
¤
get_output_test_arrays() -> List[NDArray[Any]]
Source code in src/bioimageio/spec/model/v0_4.py
1357 1358 1359 1360 | |
get_package_content
¤
get_package_content() -> Dict[
FileName, Union[FileDescr, BioimageioYamlContent]
]
Returns package content without creating the package.
Source code in src/bioimageio/spec/_internal/common_nodes.py
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | |
ignore_url_parent
pydantic-validator
¤
ignore_url_parent(parent: Any)
Source code in src/bioimageio/spec/model/v0_4.py
1292 1293 1294 1295 1296 1297 1298 1299 | |
load
classmethod
¤
load(
data: BioimageioYamlContentView,
context: Optional[ValidationContext] = None,
) -> Union[Self, InvalidDescr]
factory method to create a resource description object
Source code in src/bioimageio/spec/_internal/common_nodes.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | |
minimum_shape2valid_output
pydantic-validator
¤
minimum_shape2valid_output() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
package
¤
package(
dest: Optional[
Union[ZipFile, IO[bytes], Path, str]
] = None,
) -> ZipFile
package the described resource as a zip archive
| PARAMETER | DESCRIPTION |
|---|---|
|
(path/bytes stream of) destination zipfile
TYPE:
|
Source code in src/bioimageio/spec/_internal/common_nodes.py
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | |
unique_io_names
pydantic-validator
¤
unique_io_names() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1160 1161 1162 1163 1164 1165 1166 | |
unique_tensor_descr_names
pydantic-validator
¤
unique_tensor_descr_names(
value: Sequence[
Union[InputTensorDescr, OutputTensorDescr]
],
) -> Sequence[Union[InputTensorDescr, OutputTensorDescr]]
Source code in src/bioimageio/spec/model/v0_4.py
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 | |
validate_tensor_references_in_inputs
pydantic-validator
¤
validate_tensor_references_in_inputs() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 | |
validate_tensor_references_in_outputs
pydantic-validator
¤
validate_tensor_references_in_outputs() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 | |
warn_about_tag_categories
classmethod
¤
warn_about_tag_categories(
value: List[str], info: ValidationInfo
) -> List[str]
Source code in src/bioimageio/spec/generic/v0_2.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | |
ModelId
¤
Bases: ResourceId
flowchart TD
bioimageio.spec.model.v0_4.ModelId[ModelId]
bioimageio.spec.generic.v0_2.ResourceId[ResourceId]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec.generic.v0_2.ResourceId --> bioimageio.spec.model.v0_4.ModelId
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.generic.v0_2.ResourceId
click bioimageio.spec.model.v0_4.ModelId href "" "bioimageio.spec.model.v0_4.ModelId"
click bioimageio.spec.generic.v0_2.ResourceId href "" "bioimageio.spec.generic.v0_2.ResourceId"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
Node
pydantic-model
¤
Bases: pydantic.BaseModel
Show JSON schema:
{
"additionalProperties": false,
"properties": {},
"title": "_internal.node.Node",
"type": "object"
}
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
NodeWithExplicitlySetFields
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {},
"title": "_internal.common_nodes.NodeWithExplicitlySetFields",
"type": "object"
}
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
OnnxWeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"opset_version": {
"anyOf": [
{
"minimum": 7,
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "ONNX opset version",
"title": "Opset Version"
}
},
"required": [
"source"
],
"title": "model.v0_4.OnnxWeightsDescr",
"type": "object"
}
Fields:
-
source(FileSource_) -
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
opset_version(Optional[int])
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
OrcidId
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.OrcidId[OrcidId]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.OrcidId
click bioimageio.spec.model.v0_4.OrcidId href "" "bioimageio.spec.model.v0_4.OrcidId"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
An ORCID identifier, see https://orcid.org/
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
OutputTensorDescr
pydantic-model
¤
Bases: TensorDescrBase
Show JSON schema:
{
"$defs": {
"BinarizeDescr": {
"additionalProperties": false,
"description": "BinarizeDescr the tensor with a fixed `BinarizeKwargs.threshold`.\nValues above the threshold will be set to one, values below the threshold to zero.",
"properties": {
"name": {
"const": "binarize",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/BinarizeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.BinarizeDescr",
"type": "object"
},
"BinarizeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `BinarizeDescr`",
"properties": {
"threshold": {
"description": "The fixed threshold",
"title": "Threshold",
"type": "number"
}
},
"required": [
"threshold"
],
"title": "model.v0_4.BinarizeKwargs",
"type": "object"
},
"ClipDescr": {
"additionalProperties": false,
"description": "Clip tensor values to a range.\n\nSet tensor values below `ClipKwargs.min` to `ClipKwargs.min`\nand above `ClipKwargs.max` to `ClipKwargs.max`.",
"properties": {
"name": {
"const": "clip",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ClipKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ClipDescr",
"type": "object"
},
"ClipKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ClipDescr`",
"properties": {
"min": {
"description": "minimum value for clipping",
"title": "Min",
"type": "number"
},
"max": {
"description": "maximum value for clipping",
"title": "Max",
"type": "number"
}
},
"required": [
"min",
"max"
],
"title": "model.v0_4.ClipKwargs",
"type": "object"
},
"ImplicitOutputShape": {
"additionalProperties": false,
"description": "Output tensor shape depending on an input tensor shape.\n`shape(output_tensor) = shape(input_tensor) * scale + 2 * offset`",
"properties": {
"reference_tensor": {
"description": "Name of the reference tensor.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"scale": {
"description": "output_pix/input_pix for each dimension.\n'null' values indicate new dimensions, whose length is defined by 2*`offset`",
"items": {
"anyOf": [
{
"type": "number"
},
{
"type": "null"
}
]
},
"minItems": 1,
"title": "Scale",
"type": "array"
},
"offset": {
"description": "Position of origin wrt to input.",
"items": {
"anyOf": [
{
"type": "integer"
},
{
"multipleOf": 0.5,
"type": "number"
}
]
},
"minItems": 1,
"title": "Offset",
"type": "array"
}
},
"required": [
"reference_tensor",
"scale",
"offset"
],
"title": "model.v0_4.ImplicitOutputShape",
"type": "object"
},
"ScaleLinearDescr": {
"additionalProperties": false,
"description": "Fixed linear scaling.",
"properties": {
"name": {
"const": "scale_linear",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleLinearKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleLinearDescr",
"type": "object"
},
"ScaleLinearKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleLinearDescr`",
"properties": {
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to scale the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"gain": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 1.0,
"description": "multiplicative factor",
"title": "Gain"
},
"offset": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 0.0,
"description": "additive term",
"title": "Offset"
}
},
"title": "model.v0_4.ScaleLinearKwargs",
"type": "object"
},
"ScaleMeanVarianceDescr": {
"additionalProperties": false,
"description": "Scale the tensor s.t. its mean and variance match a reference tensor.",
"properties": {
"name": {
"const": "scale_mean_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleMeanVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleMeanVarianceDescr",
"type": "object"
},
"ScaleMeanVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleMeanVarianceDescr`",
"properties": {
"mode": {
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"reference_tensor": {
"description": "Name of tensor to match.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to normalize the two image axes for 2d data jointly.\nDefault: scale all non-batch axes jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability:\n\"`out = (tensor - mean) / (std + eps) * (ref_std + eps) + ref_mean.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"mode",
"reference_tensor"
],
"title": "model.v0_4.ScaleMeanVarianceKwargs",
"type": "object"
},
"ScaleRangeDescr": {
"additionalProperties": false,
"description": "Scale with percentiles.",
"properties": {
"name": {
"const": "scale_range",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleRangeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleRangeDescr",
"type": "object"
},
"ScaleRangeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleRangeDescr`\n\nFor `min_percentile`=0.0 (the default) and `max_percentile`=100 (the default)\nthis processing step normalizes data to the [0, 1] intervall.\nFor other percentiles the normalized values will partially be outside the [0, 1]\nintervall. Use `ScaleRange` followed by `ClipDescr` if you want to limit the\nnormalized values to a range.",
"properties": {
"mode": {
"description": "Mode for computing percentiles.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | compute for the entire dataset |\n| per_sample | compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example xy to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"min_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 0.0,
"description": "The lower percentile used to determine the value to align with zero.",
"ge": 0,
"lt": 100,
"title": "Min Percentile"
},
"max_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 100.0,
"description": "The upper percentile used to determine the value to align with one.\nHas to be bigger than `min_percentile`.\nThe range is 1 to 100 instead of 0 to 100 to avoid mistakenly\naccepting percentiles specified in the range 0.0 to 1.0.",
"gt": 1,
"le": 100,
"title": "Max Percentile"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability.\n`out = (tensor - v_lower) / (v_upper - v_lower + eps)`;\nwith `v_lower,v_upper` values at the respective percentiles.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
},
"reference_tensor": {
"anyOf": [
{
"minLength": 1,
"title": "TensorName",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Tensor name to compute the percentiles from. Default: The tensor itself.\nFor any tensor in `inputs` only input tensor references are allowed.\nFor a tensor in `outputs` only input tensor refereences are allowed if `mode: per_dataset`",
"title": "Reference Tensor"
}
},
"required": [
"mode",
"axes"
],
"title": "model.v0_4.ScaleRangeKwargs",
"type": "object"
},
"SigmoidDescr": {
"additionalProperties": false,
"description": "The logistic sigmoid funciton, a.k.a. expit function.",
"properties": {
"name": {
"const": "sigmoid",
"title": "Name",
"type": "string"
}
},
"required": [
"name"
],
"title": "model.v0_4.SigmoidDescr",
"type": "object"
},
"ZeroMeanUnitVarianceDescr": {
"additionalProperties": false,
"description": "Subtract mean and divide by variance.",
"properties": {
"name": {
"const": "zero_mean_unit_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ZeroMeanUnitVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ZeroMeanUnitVarianceDescr",
"type": "object"
},
"ZeroMeanUnitVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ZeroMeanUnitVarianceDescr`",
"properties": {
"mode": {
"default": "fixed",
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| fixed | Fixed values for mean and variance |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"fixed",
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example `xy` to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"mean": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The mean value(s) to use for `mode: fixed`.\nFor example `[1.1, 2.2, 3.3]` in the case of a 3 channel image with `axes: xy`.",
"examples": [
[
1.1,
2.2,
3.3
]
],
"title": "Mean"
},
"std": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The standard deviation values to use for `mode: fixed`. Analogous to mean.",
"examples": [
[
0.1,
0.2,
0.3
]
],
"title": "Std"
},
"eps": {
"default": 1e-06,
"description": "epsilon for numeric stability: `out = (tensor - mean) / (std + eps)`.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"axes"
],
"title": "model.v0_4.ZeroMeanUnitVarianceKwargs",
"type": "object"
}
},
"additionalProperties": false,
"properties": {
"name": {
"description": "Tensor name. No duplicates are allowed.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"description": {
"default": "",
"title": "Description",
"type": "string"
},
"axes": {
"description": "Axes identifying characters. Same length and order as the axes in `shape`.\n| axis | description |\n| --- | --- |\n| b | batch (groups multiple samples) |\n| i | instance/index/element |\n| t | time |\n| c | channel |\n| z | spatial dimension z |\n| y | spatial dimension y |\n| x | spatial dimension x |",
"title": "Axes",
"type": "string"
},
"data_range": {
"anyOf": [
{
"maxItems": 2,
"minItems": 2,
"prefixItems": [
{
"type": "number"
},
{
"type": "number"
}
],
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Tuple `(minimum, maximum)` specifying the allowed range of the data in this tensor.\nIf not specified, the full data range that can be expressed in `data_type` is allowed.",
"title": "Data Range"
},
"data_type": {
"description": "Data type.\nThe data flow in bioimage.io models is explained\n[in this diagram.](https://docs.google.com/drawings/d/1FTw8-Rn6a6nXdkZ_SkMumtcjvur9mtIhRqLwnKqZNHM/edit).",
"enum": [
"float32",
"float64",
"uint8",
"int8",
"uint16",
"int16",
"uint32",
"int32",
"uint64",
"int64",
"bool"
],
"title": "Data Type",
"type": "string"
},
"shape": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"$ref": "#/$defs/ImplicitOutputShape"
}
],
"description": "Output tensor shape.",
"title": "Shape"
},
"halo": {
"anyOf": [
{
"items": {
"type": "integer"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The `halo` that should be cropped from the output tensor to avoid boundary effects.\nThe `halo` is to be cropped from both sides, i.e. `shape_after_crop = shape - 2 * halo`.\nTo document a `halo` that is already cropped by the model `shape.offset` has to be used instead.",
"title": "Halo"
},
"postprocessing": {
"description": "Description of how this output should be postprocessed.",
"items": {
"discriminator": {
"mapping": {
"binarize": "#/$defs/BinarizeDescr",
"clip": "#/$defs/ClipDescr",
"scale_linear": "#/$defs/ScaleLinearDescr",
"scale_mean_variance": "#/$defs/ScaleMeanVarianceDescr",
"scale_range": "#/$defs/ScaleRangeDescr",
"sigmoid": "#/$defs/SigmoidDescr",
"zero_mean_unit_variance": "#/$defs/ZeroMeanUnitVarianceDescr"
},
"propertyName": "name"
},
"oneOf": [
{
"$ref": "#/$defs/BinarizeDescr"
},
{
"$ref": "#/$defs/ClipDescr"
},
{
"$ref": "#/$defs/ScaleLinearDescr"
},
{
"$ref": "#/$defs/SigmoidDescr"
},
{
"$ref": "#/$defs/ZeroMeanUnitVarianceDescr"
},
{
"$ref": "#/$defs/ScaleRangeDescr"
},
{
"$ref": "#/$defs/ScaleMeanVarianceDescr"
}
]
},
"title": "Postprocessing",
"type": "array"
}
},
"required": [
"name",
"axes",
"data_type",
"shape"
],
"title": "model.v0_4.OutputTensorDescr",
"type": "object"
}
Fields:
-
name(TensorName) -
description(str) -
axes(AxesStr) -
data_range(Optional[Tuple[float, float]]) -
data_type(Literal['float32', 'float64', 'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'bool']) -
shape(Union[Sequence[int], ImplicitOutputShape]) -
halo(Optional[Sequence[int]]) -
postprocessing(List[PostprocessingDescr])
Validators:
axes
pydantic-field
¤
axes: AxesStr
Axes identifying characters. Same length and order as the axes in shape.
| axis | description |
| --- | --- |
| b | batch (groups multiple samples) |
| i | instance/index/element |
| t | time |
| c | channel |
| z | spatial dimension z |
| y | spatial dimension y |
| x | spatial dimension x |
data_range
pydantic-field
¤
data_range: Optional[Tuple[float, float]] = None
Tuple (minimum, maximum) specifying the allowed range of the data in this tensor.
If not specified, the full data range that can be expressed in data_type is allowed.
data_type
pydantic-field
¤
data_type: Literal[
"float32",
"float64",
"uint8",
"int8",
"uint16",
"int16",
"uint32",
"int32",
"uint64",
"int64",
"bool",
]
Data type. The data flow in bioimage.io models is explained in this diagram..
halo
pydantic-field
¤
halo: Optional[Sequence[int]] = None
The halo that should be cropped from the output tensor to avoid boundary effects.
The halo is to be cropped from both sides, i.e. shape_after_crop = shape - 2 * halo.
To document a halo that is already cropped by the model shape.offset has to be used instead.
postprocessing
pydantic-field
¤
postprocessing: List[PostprocessingDescr]
Description of how this output should be postprocessed.
matching_halo_length
pydantic-validator
¤
matching_halo_length() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1003 1004 1005 1006 1007 1008 1009 1010 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_postprocessing_kwargs
pydantic-validator
¤
validate_postprocessing_kwargs() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 | |
ParameterizedInputShape
pydantic-model
¤
Bases: Node
A sequence of valid shapes given by shape_k = min + k * step for k in {0, 1, ...}.
Show JSON schema:
{
"additionalProperties": false,
"description": "A sequence of valid shapes given by `shape_k = min + k * step for k in {0, 1, ...}`.",
"properties": {
"min": {
"description": "The minimum input shape",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Min",
"type": "array"
},
"step": {
"description": "The minimum shape change",
"items": {
"type": "integer"
},
"minItems": 1,
"title": "Step",
"type": "array"
}
},
"required": [
"min",
"step"
],
"title": "model.v0_4.ParameterizedInputShape",
"type": "object"
}
Fields:
Validators:
__len__
¤
__len__() -> int
Source code in src/bioimageio/spec/model/v0_4.py
556 557 | |
matching_lengths
pydantic-validator
¤
matching_lengths() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
559 560 561 562 563 564 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ProcessingDescrBase
pydantic-model
¤
Bases: NodeWithExplicitlySetFields
processing base class
Show JSON schema:
{
"additionalProperties": false,
"description": "processing base class",
"properties": {},
"title": "model.v0_4.ProcessingDescrBase",
"type": "object"
}
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ProcessingKwargs
pydantic-model
¤
Bases: KwargsNode
base class for pre-/postprocessing key word arguments
Show JSON schema:
{
"additionalProperties": false,
"description": "base class for pre-/postprocessing key word arguments",
"properties": {},
"title": "model.v0_4.ProcessingKwargs",
"type": "object"
}
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
PytorchStateDictWeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"architecture": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "CallableFromFile",
"type": "string"
},
{
"pattern": "^.+\\..+$",
"title": "CallableFromDepencency",
"type": "string"
}
],
"description": "callable returning a torch.nn.Module instance.\nLocal implementation: `<relative path to file>:<identifier of implementation within the file>`.\nImplementation in a dependency: `<dependency-package>.<[dependency-module]>.<identifier>`.",
"examples": [
"my_function.py:MyNetworkClass",
"my_module.submodule.get_my_model"
],
"title": "Architecture"
},
"architecture_sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The SHA256 of the architecture source file, if the architecture is not defined in a module listed in `dependencies`\nYou can drag and drop your file to this\n[online tool](http://emn178.github.io/online-tools/sha256_checksum.html) to generate a SHA256 in your browser.\nOr you can generate a SHA256 checksum with Python's `hashlib`,\n[here is a codesnippet](https://gist.github.com/FynnBe/e64460463df89439cff218bbf59c1100).",
"title": "Architecture Sha256"
},
"kwargs": {
"additionalProperties": true,
"description": "key word arguments for the `architecture` callable",
"title": "Kwargs",
"type": "object"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used.\nIf `depencencies` is specified it should include pytorch and the verison has to match.\n(`dependencies` overrules `pytorch_version`)"
}
},
"required": [
"source",
"architecture"
],
"title": "model.v0_4.PytorchStateDictWeightsDescr",
"type": "object"
}
Fields:
-
source(FileSource_) -
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
architecture(CustomCallable) -
architecture_sha256(Optional[Sha256]) -
kwargs(Dict[str, Any]) -
pytorch_version(Optional[Version])
Validators:
architecture
pydantic-field
¤
architecture: CustomCallable
callable returning a torch.nn.Module instance.
Local implementation: <relative path to file>:<identifier of implementation within the file>.
Implementation in a dependency: <dependency-package>.<[dependency-module]>.<identifier>.
architecture_sha256
pydantic-field
¤
architecture_sha256: Optional[Sha256] = None
The SHA256 of the architecture source file,
if the architecture is not defined in a module listed in dependencies
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
pytorch_version
pydantic-field
¤
pytorch_version: Optional[Version] = None
Version of the PyTorch library used.
If depencencies is specified it should include pytorch and the verison has to match.
(dependencies overrules pytorch_version)
check_architecture_sha256
pydantic-validator
¤
check_architecture_sha256() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | |
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
RelativeFilePath
¤
Bases: RelativePathBase[Union[AbsoluteFilePath, HttpUrl, ZipPath]]
flowchart TD
bioimageio.spec.model.v0_4.RelativeFilePath[RelativeFilePath]
bioimageio.spec._internal.io.RelativePathBase[RelativePathBase]
bioimageio.spec._internal.io.RelativePathBase --> bioimageio.spec.model.v0_4.RelativeFilePath
click bioimageio.spec.model.v0_4.RelativeFilePath href "" "bioimageio.spec.model.v0_4.RelativeFilePath"
click bioimageio.spec._internal.io.RelativePathBase href "" "bioimageio.spec._internal.io.RelativePathBase"
A path relative to the rdf.yaml file (also if the RDF source is a URL).
| METHOD | DESCRIPTION |
|---|---|
__repr__ |
|
__str__ |
|
absolute |
get the absolute path/url |
format |
|
get_absolute |
|
model_post_init |
add validation @private |
| ATTRIBUTE | DESCRIPTION |
|---|---|
path |
TYPE:
|
__repr__
¤
__repr__() -> str
Source code in src/bioimageio/spec/_internal/io.py
148 149 | |
__str__
¤
__str__() -> str
Source code in src/bioimageio/spec/_internal/io.py
145 146 | |
absolute
¤
absolute() -> AbsolutePathT
get the absolute path/url
(resolved at time of initialization with the root of the ValidationContext)
Source code in src/bioimageio/spec/_internal/io.py
123 124 125 126 127 128 129 130 | |
format
¤
format() -> str
Source code in src/bioimageio/spec/_internal/io.py
151 152 153 | |
get_absolute
¤
get_absolute(
root: "RootHttpUrl | Path | AnyUrl | ZipFile",
) -> "AbsoluteFilePath | HttpUrl | ZipPath"
Source code in src/bioimageio/spec/_internal/io.py
215 216 217 218 219 220 221 222 223 224 225 226 227 | |
model_post_init
¤
model_post_init(__context: Any) -> None
add validation @private
Source code in src/bioimageio/spec/_internal/io.py
208 209 210 211 212 213 | |
ResourceId
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.ResourceId[ResourceId]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.ResourceId
click bioimageio.spec.model.v0_4.ResourceId href "" "bioimageio.spec.model.v0_4.ResourceId"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
RestrictCharacters
dataclass
¤
RestrictCharacters(alphabet: str)
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
validate |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
alphabet |
TYPE:
|
__get_pydantic_core_schema__
¤
__get_pydantic_core_schema__(
source: Type[Any], handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validator_annotations.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | |
validate
¤
validate(value: str) -> str
Source code in src/bioimageio/spec/_internal/validator_annotations.py
54 55 56 57 | |
RunMode
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"name": {
"anyOf": [
{
"const": "deepimagej",
"type": "string"
},
{
"type": "string"
}
],
"description": "Run mode name",
"title": "Name"
},
"kwargs": {
"additionalProperties": true,
"description": "Run mode specific key word arguments",
"title": "Kwargs",
"type": "object"
}
},
"required": [
"name"
],
"title": "model.v0_4.RunMode",
"type": "object"
}
Fields:
-
name(Union[KnownRunMode, str]) -
kwargs(Dict[str, Any])
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleLinearDescr
pydantic-model
¤
Bases: ProcessingDescrBase
Fixed linear scaling.
Show JSON schema:
{
"$defs": {
"ScaleLinearKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleLinearDescr`",
"properties": {
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to scale the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"gain": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 1.0,
"description": "multiplicative factor",
"title": "Gain"
},
"offset": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 0.0,
"description": "additive term",
"title": "Offset"
}
},
"title": "model.v0_4.ScaleLinearKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Fixed linear scaling.",
"properties": {
"name": {
"const": "scale_linear",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleLinearKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleLinearDescr",
"type": "object"
}
Fields:
-
name(Literal['scale_linear']) -
kwargs(ScaleLinearKwargs)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleLinearKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for ScaleLinearDescr
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `ScaleLinearDescr`",
"properties": {
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to scale the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"gain": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 1.0,
"description": "multiplicative factor",
"title": "Gain"
},
"offset": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"type": "array"
}
],
"default": 0.0,
"description": "additive term",
"title": "Offset"
}
},
"title": "model.v0_4.ScaleLinearKwargs",
"type": "object"
}
Fields:
-
axes(Optional[AxesInCZYX]) -
gain(Union[float, List[float]]) -
offset(Union[float, List[float]])
Validators:
axes
pydantic-field
¤
axes: Optional[AxesInCZYX] = None
The subset of axes to scale jointly. For example xy to scale the two image axes for 2d data jointly.
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
either_gain_or_offset
pydantic-validator
¤
either_gain_or_offset() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleMeanVarianceDescr
pydantic-model
¤
Bases: ProcessingDescrBase
Scale the tensor s.t. its mean and variance match a reference tensor.
Show JSON schema:
{
"$defs": {
"ScaleMeanVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleMeanVarianceDescr`",
"properties": {
"mode": {
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"reference_tensor": {
"description": "Name of tensor to match.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to normalize the two image axes for 2d data jointly.\nDefault: scale all non-batch axes jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability:\n\"`out = (tensor - mean) / (std + eps) * (ref_std + eps) + ref_mean.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"mode",
"reference_tensor"
],
"title": "model.v0_4.ScaleMeanVarianceKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Scale the tensor s.t. its mean and variance match a reference tensor.",
"properties": {
"name": {
"const": "scale_mean_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleMeanVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleMeanVarianceDescr",
"type": "object"
}
Fields:
-
name(Literal['scale_mean_variance']) -
kwargs(ScaleMeanVarianceKwargs)
implemented_name
class-attribute
¤
implemented_name: Literal["scale_mean_variance"] = (
"scale_mean_variance"
)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleMeanVarianceKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for ScaleMeanVarianceDescr
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `ScaleMeanVarianceDescr`",
"properties": {
"mode": {
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"reference_tensor": {
"description": "Name of tensor to match.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"axes": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The subset of axes to scale jointly.\nFor example xy to normalize the two image axes for 2d data jointly.\nDefault: scale all non-batch axes jointly.",
"examples": [
"xy"
],
"title": "Axes"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability:\n\"`out = (tensor - mean) / (std + eps) * (ref_std + eps) + ref_mean.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"mode",
"reference_tensor"
],
"title": "model.v0_4.ScaleMeanVarianceKwargs",
"type": "object"
}
Fields:
-
mode(Literal['per_dataset', 'per_sample']) -
reference_tensor(TensorName) -
axes(Optional[AxesInCZYX]) -
eps(float)
axes
pydantic-field
¤
axes: Optional[AxesInCZYX] = None
The subset of axes to scale jointly. For example xy to normalize the two image axes for 2d data jointly. Default: scale all non-batch axes jointly.
eps
pydantic-field
¤
eps: float = 1e-06
Epsilon for numeric stability: "`out = (tensor - mean) / (std + eps) * (ref_std + eps) + ref_mean.
mode
pydantic-field
¤
mode: Literal['per_dataset', 'per_sample']
Mode for computing mean and variance. | mode | description | | ----------- | ------------------------------------ | | per_dataset | Compute for the entire dataset | | per_sample | Compute for each sample individually |
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleRangeDescr
pydantic-model
¤
Bases: ProcessingDescrBase
Scale with percentiles.
Show JSON schema:
{
"$defs": {
"ScaleRangeKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ScaleRangeDescr`\n\nFor `min_percentile`=0.0 (the default) and `max_percentile`=100 (the default)\nthis processing step normalizes data to the [0, 1] intervall.\nFor other percentiles the normalized values will partially be outside the [0, 1]\nintervall. Use `ScaleRange` followed by `ClipDescr` if you want to limit the\nnormalized values to a range.",
"properties": {
"mode": {
"description": "Mode for computing percentiles.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | compute for the entire dataset |\n| per_sample | compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example xy to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"min_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 0.0,
"description": "The lower percentile used to determine the value to align with zero.",
"ge": 0,
"lt": 100,
"title": "Min Percentile"
},
"max_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 100.0,
"description": "The upper percentile used to determine the value to align with one.\nHas to be bigger than `min_percentile`.\nThe range is 1 to 100 instead of 0 to 100 to avoid mistakenly\naccepting percentiles specified in the range 0.0 to 1.0.",
"gt": 1,
"le": 100,
"title": "Max Percentile"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability.\n`out = (tensor - v_lower) / (v_upper - v_lower + eps)`;\nwith `v_lower,v_upper` values at the respective percentiles.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
},
"reference_tensor": {
"anyOf": [
{
"minLength": 1,
"title": "TensorName",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Tensor name to compute the percentiles from. Default: The tensor itself.\nFor any tensor in `inputs` only input tensor references are allowed.\nFor a tensor in `outputs` only input tensor refereences are allowed if `mode: per_dataset`",
"title": "Reference Tensor"
}
},
"required": [
"mode",
"axes"
],
"title": "model.v0_4.ScaleRangeKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Scale with percentiles.",
"properties": {
"name": {
"const": "scale_range",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ScaleRangeKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ScaleRangeDescr",
"type": "object"
}
Fields:
-
name(Literal['scale_range']) -
kwargs(ScaleRangeKwargs)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ScaleRangeKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for ScaleRangeDescr
For min_percentile=0.0 (the default) and max_percentile=100 (the default)
this processing step normalizes data to the [0, 1] intervall.
For other percentiles the normalized values will partially be outside the [0, 1]
intervall. Use ScaleRange followed by ClipDescr if you want to limit the
normalized values to a range.
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `ScaleRangeDescr`\n\nFor `min_percentile`=0.0 (the default) and `max_percentile`=100 (the default)\nthis processing step normalizes data to the [0, 1] intervall.\nFor other percentiles the normalized values will partially be outside the [0, 1]\nintervall. Use `ScaleRange` followed by `ClipDescr` if you want to limit the\nnormalized values to a range.",
"properties": {
"mode": {
"description": "Mode for computing percentiles.\n| mode | description |\n| ----------- | ------------------------------------ |\n| per_dataset | compute for the entire dataset |\n| per_sample | compute for each sample individually |",
"enum": [
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example xy to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"min_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 0.0,
"description": "The lower percentile used to determine the value to align with zero.",
"ge": 0,
"lt": 100,
"title": "Min Percentile"
},
"max_percentile": {
"anyOf": [
{
"type": "integer"
},
{
"type": "number"
}
],
"default": 100.0,
"description": "The upper percentile used to determine the value to align with one.\nHas to be bigger than `min_percentile`.\nThe range is 1 to 100 instead of 0 to 100 to avoid mistakenly\naccepting percentiles specified in the range 0.0 to 1.0.",
"gt": 1,
"le": 100,
"title": "Max Percentile"
},
"eps": {
"default": 1e-06,
"description": "Epsilon for numeric stability.\n`out = (tensor - v_lower) / (v_upper - v_lower + eps)`;\nwith `v_lower,v_upper` values at the respective percentiles.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
},
"reference_tensor": {
"anyOf": [
{
"minLength": 1,
"title": "TensorName",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Tensor name to compute the percentiles from. Default: The tensor itself.\nFor any tensor in `inputs` only input tensor references are allowed.\nFor a tensor in `outputs` only input tensor refereences are allowed if `mode: per_dataset`",
"title": "Reference Tensor"
}
},
"required": [
"mode",
"axes"
],
"title": "model.v0_4.ScaleRangeKwargs",
"type": "object"
}
Fields:
-
mode(Literal['per_dataset', 'per_sample']) -
axes(AxesInCZYX) -
min_percentile(Union[int, float]) -
max_percentile(Union[int, float]) -
eps(float) -
reference_tensor(Optional[TensorName])
Validators:
axes
pydantic-field
¤
axes: AxesInCZYX
The subset of axes to normalize jointly. For example xy to normalize the two image axes for 2d data jointly.
eps
pydantic-field
¤
eps: float = 1e-06
Epsilon for numeric stability.
out = (tensor - v_lower) / (v_upper - v_lower + eps);
with v_lower,v_upper values at the respective percentiles.
max_percentile
pydantic-field
¤
max_percentile: Union[int, float] = 100.0
The upper percentile used to determine the value to align with one.
Has to be bigger than min_percentile.
The range is 1 to 100 instead of 0 to 100 to avoid mistakenly
accepting percentiles specified in the range 0.0 to 1.0.
min_percentile
pydantic-field
¤
min_percentile: Union[int, float] = 0.0
The lower percentile used to determine the value to align with zero.
mode
pydantic-field
¤
mode: Literal['per_dataset', 'per_sample']
Mode for computing percentiles. | mode | description | | ----------- | ------------------------------------ | | per_dataset | compute for the entire dataset | | per_sample | compute for each sample individually |
reference_tensor
pydantic-field
¤
reference_tensor: Optional[TensorName] = None
Tensor name to compute the percentiles from. Default: The tensor itself.
For any tensor in inputs only input tensor references are allowed.
For a tensor in outputs only input tensor refereences are allowed if mode: per_dataset
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
min_smaller_max
pydantic-validator
¤
min_smaller_max(info: ValidationInfo) -> Self
Source code in src/bioimageio/spec/model/v0_4.py
821 822 823 824 825 826 827 828 829 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
Sha256
¤
Bases: ValidatedString
flowchart TD
bioimageio.spec.model.v0_4.Sha256[Sha256]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.Sha256
click bioimageio.spec.model.v0_4.Sha256 href "" "bioimageio.spec.model.v0_4.Sha256"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
A SHA-256 hash value
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
SigmoidDescr
pydantic-model
¤
Bases: ProcessingDescrBase
The logistic sigmoid funciton, a.k.a. expit function.
Show JSON schema:
{
"additionalProperties": false,
"description": "The logistic sigmoid funciton, a.k.a. expit function.",
"properties": {
"name": {
"const": "sigmoid",
"title": "Name",
"type": "string"
}
},
"required": [
"name"
],
"title": "model.v0_4.SigmoidDescr",
"type": "object"
}
Fields:
-
name(Literal['sigmoid'])
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
TensorDescrBase
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"name": {
"description": "Tensor name. No duplicates are allowed.",
"minLength": 1,
"title": "TensorName",
"type": "string"
},
"description": {
"default": "",
"title": "Description",
"type": "string"
},
"axes": {
"description": "Axes identifying characters. Same length and order as the axes in `shape`.\n| axis | description |\n| --- | --- |\n| b | batch (groups multiple samples) |\n| i | instance/index/element |\n| t | time |\n| c | channel |\n| z | spatial dimension z |\n| y | spatial dimension y |\n| x | spatial dimension x |",
"title": "Axes",
"type": "string"
},
"data_range": {
"anyOf": [
{
"maxItems": 2,
"minItems": 2,
"prefixItems": [
{
"type": "number"
},
{
"type": "number"
}
],
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Tuple `(minimum, maximum)` specifying the allowed range of the data in this tensor.\nIf not specified, the full data range that can be expressed in `data_type` is allowed.",
"title": "Data Range"
}
},
"required": [
"name",
"axes"
],
"title": "model.v0_4.TensorDescrBase",
"type": "object"
}
Fields:
-
name(TensorName) -
description(str) -
axes(AxesStr) -
data_range(Optional[Tuple[float, float]])
axes
pydantic-field
¤
axes: AxesStr
Axes identifying characters. Same length and order as the axes in shape.
| axis | description |
| --- | --- |
| b | batch (groups multiple samples) |
| i | instance/index/element |
| t | time |
| c | channel |
| z | spatial dimension z |
| y | spatial dimension y |
| x | spatial dimension x |
data_range
pydantic-field
¤
data_range: Optional[Tuple[float, float]] = None
Tuple (minimum, maximum) specifying the allowed range of the data in this tensor.
If not specified, the full data range that can be expressed in data_type is allowed.
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
TensorName
¤
Bases: LowerCaseIdentifier
flowchart TD
bioimageio.spec.model.v0_4.TensorName[TensorName]
bioimageio.spec._internal.types.LowerCaseIdentifier[LowerCaseIdentifier]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.types.LowerCaseIdentifier --> bioimageio.spec.model.v0_4.TensorName
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec._internal.types.LowerCaseIdentifier
click bioimageio.spec.model.v0_4.TensorName href "" "bioimageio.spec.model.v0_4.TensorName"
click bioimageio.spec._internal.types.LowerCaseIdentifier href "" "bioimageio.spec._internal.types.LowerCaseIdentifier"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
TYPE:
|
root_model
class-attribute
¤
root_model: Type[RootModel[Any]] = RootModel[
LowerCaseIdentifierAnno
]
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
TensorflowJsWeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The multi-file weights.\nAll required files/folders should be a zip archive.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowJsWeightsDescr",
"type": "object"
}
Fields:
-
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
tensorflow_version(Optional[Version]) -
source(FileSource_)
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
source
pydantic-field
¤
source: FileSource_
The multi-file weights. All required files/folders should be a zip archive.
tensorflow_version
pydantic-field
¤
tensorflow_version: Optional[Version] = None
Version of the TensorFlow library used.
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
TensorflowSavedModelBundleWeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowSavedModelBundleWeightsDescr",
"type": "object"
}
Fields:
-
source(FileSource_) -
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
tensorflow_version(Optional[Version])
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
tensorflow_version
pydantic-field
¤
tensorflow_version: Optional[Version] = None
Version of the TensorFlow library used.
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
TorchscriptWeightsDescr
pydantic-model
¤
Bases: WeightsEntryDescrBase
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TorchscriptWeightsDescr",
"type": "object"
}
Fields:
-
source(FileSource_) -
sha256(Optional[Sha256]) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat]) -
pytorch_version(Optional[Version])
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
pytorch_version
pydantic-field
¤
pytorch_version: Optional[Version] = None
Version of the PyTorch library used.
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
Uploader
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"additionalProperties": false,
"properties": {
"email": {
"description": "Email",
"format": "email",
"title": "Email",
"type": "string"
},
"name": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "name",
"title": "Name"
}
},
"required": [
"email"
],
"title": "generic.v0_2.Uploader",
"type": "object"
}
Fields:
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ValidatedStringWithInnerNode
¤
Bases: ABC, ValidatedString, Generic[InnerNodeT]
flowchart TD
bioimageio.spec.model.v0_4.ValidatedStringWithInnerNode[ValidatedStringWithInnerNode]
bioimageio.spec._internal.validated_string.ValidatedString[ValidatedString]
bioimageio.spec._internal.validated_string.ValidatedString --> bioimageio.spec.model.v0_4.ValidatedStringWithInnerNode
click bioimageio.spec.model.v0_4.ValidatedStringWithInnerNode href "" "bioimageio.spec.model.v0_4.ValidatedStringWithInnerNode"
click bioimageio.spec._internal.validated_string.ValidatedString href "" "bioimageio.spec._internal.validated_string.ValidatedString"
A validated string with further validation and serialization using a Node
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
__get_pydantic_json_schema__ |
|
__new__ |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
root_model |
the pydantic root model to validate the string
TYPE:
|
root_model
class-attribute
¤
the pydantic root model to validate the string
__get_pydantic_core_schema__
classmethod
¤
__get_pydantic_core_schema__(
source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema
Source code in src/bioimageio/spec/_internal/validated_string.py
29 30 31 32 33 | |
__get_pydantic_json_schema__
classmethod
¤
__get_pydantic_json_schema__(
core_schema: CoreSchema, handler: GetJsonSchemaHandler
) -> JsonSchemaValue
Source code in src/bioimageio/spec/_internal/validated_string.py
35 36 37 38 39 40 41 42 43 44 | |
__new__
¤
__new__(object: object)
Source code in src/bioimageio/spec/_internal/validated_string.py
19 20 21 22 23 | |
Version
¤
Bases: RootModel[Union[str, int, float]]
flowchart TD
bioimageio.spec.model.v0_4.Version[Version]
click bioimageio.spec.model.v0_4.Version href "" "bioimageio.spec.model.v0_4.Version"
wraps a packaging.version.Version instance for validation in pydantic models
| METHOD | DESCRIPTION |
|---|---|
__eq__ |
|
__lt__ |
|
__str__ |
|
model_post_init |
set |
| ATTRIBUTE | DESCRIPTION |
|---|---|
base_version |
The "base version" of the version.
TYPE:
|
dev |
The development number of the version.
TYPE:
|
epoch |
The epoch of the version.
TYPE:
|
is_devrelease |
Whether this version is a development release.
TYPE:
|
is_postrelease |
Whether this version is a post-release.
TYPE:
|
is_prerelease |
Whether this version is a pre-release.
TYPE:
|
local |
The local version segment of the version.
TYPE:
|
major |
The first item of :attr:
TYPE:
|
micro |
The third item of :attr:
TYPE:
|
minor |
The second item of :attr:
TYPE:
|
post |
The post-release number of the version.
TYPE:
|
pre |
The pre-release segment of the version.
TYPE:
|
public |
The public portion of the version.
TYPE:
|
release |
The components of the "release" segment of the version.
TYPE:
|
base_version
property
¤
base_version: str
The "base version" of the version.
Version("1.2.3").base_version '1.2.3' Version("1.2.3+abc").base_version '1.2.3' Version("1!1.2.3+abc.dev1").base_version '1!1.2.3'
The "base version" is the public version of the project without any pre or post release markers.
dev
property
¤
dev: Optional[int]
The development number of the version.
print(Version("1.2.3").dev) None Version("1.2.3.dev1").dev 1
epoch
property
¤
epoch: int
The epoch of the version.
Version("2.0.0").epoch 0 Version("1!2.0.0").epoch 1
is_devrelease
property
¤
is_devrelease: bool
Whether this version is a development release.
Version("1.2.3").is_devrelease False Version("1.2.3.dev1").is_devrelease True
is_postrelease
property
¤
is_postrelease: bool
Whether this version is a post-release.
Version("1.2.3").is_postrelease False Version("1.2.3.post1").is_postrelease True
is_prerelease
property
¤
is_prerelease: bool
Whether this version is a pre-release.
Version("1.2.3").is_prerelease False Version("1.2.3a1").is_prerelease True Version("1.2.3b1").is_prerelease True Version("1.2.3rc1").is_prerelease True Version("1.2.3dev1").is_prerelease True
local
property
¤
local: Optional[str]
The local version segment of the version.
print(Version("1.2.3").local) None Version("1.2.3+abc").local 'abc'
major
property
¤
major: int
The first item of :attr:release or 0 if unavailable.
Version("1.2.3").major 1
micro
property
¤
micro: int
The third item of :attr:release or 0 if unavailable.
Version("1.2.3").micro 3 Version("1").micro 0
minor
property
¤
minor: int
The second item of :attr:release or 0 if unavailable.
Version("1.2.3").minor 2 Version("1").minor 0
post
property
¤
post: Optional[int]
The post-release number of the version.
print(Version("1.2.3").post) None Version("1.2.3.post1").post 1
pre
property
¤
pre: Optional[Tuple[str, int]]
The pre-release segment of the version.
print(Version("1.2.3").pre) None Version("1.2.3a1").pre ('a', 1) Version("1.2.3b1").pre ('b', 1) Version("1.2.3rc1").pre ('rc', 1)
public
property
¤
public: str
The public portion of the version.
Version("1.2.3").public '1.2.3' Version("1.2.3+abc").public '1.2.3' Version("1.2.3+abc.dev1").public '1.2.3'
release
property
¤
release: Tuple[int, ...]
The components of the "release" segment of the version.
Version("1.2.3").release (1, 2, 3) Version("2.0.0").release (2, 0, 0) Version("1!2.0.0.post0").release (2, 0, 0)
Includes trailing zeroes but not the epoch or any pre-release / development / post-release suffixes.
__eq__
¤
__eq__(other: Version)
Source code in src/bioimageio/spec/_internal/version_type.py
25 26 | |
__lt__
¤
__lt__(other: Version)
Source code in src/bioimageio/spec/_internal/version_type.py
22 23 | |
__str__
¤
__str__()
Source code in src/bioimageio/spec/_internal/version_type.py
14 15 | |
model_post_init
¤
model_post_init(__context: Any) -> None
set _version attribute @private
Source code in src/bioimageio/spec/_internal/version_type.py
17 18 19 20 | |
WeightsDescr
pydantic-model
¤
Bases: Node
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"KerasHdf5WeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "TensorFlow version used to create these weights"
}
},
"required": [
"source"
],
"title": "model.v0_4.KerasHdf5WeightsDescr",
"type": "object"
},
"OnnxWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"opset_version": {
"anyOf": [
{
"minimum": 7,
"type": "integer"
},
{
"type": "null"
}
],
"default": null,
"description": "ONNX opset version",
"title": "Opset Version"
}
},
"required": [
"source"
],
"title": "model.v0_4.OnnxWeightsDescr",
"type": "object"
},
"PytorchStateDictWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"architecture": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "CallableFromFile",
"type": "string"
},
{
"pattern": "^.+\\..+$",
"title": "CallableFromDepencency",
"type": "string"
}
],
"description": "callable returning a torch.nn.Module instance.\nLocal implementation: `<relative path to file>:<identifier of implementation within the file>`.\nImplementation in a dependency: `<dependency-package>.<[dependency-module]>.<identifier>`.",
"examples": [
"my_function.py:MyNetworkClass",
"my_module.submodule.get_my_model"
],
"title": "Architecture"
},
"architecture_sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The SHA256 of the architecture source file, if the architecture is not defined in a module listed in `dependencies`\nYou can drag and drop your file to this\n[online tool](http://emn178.github.io/online-tools/sha256_checksum.html) to generate a SHA256 in your browser.\nOr you can generate a SHA256 checksum with Python's `hashlib`,\n[here is a codesnippet](https://gist.github.com/FynnBe/e64460463df89439cff218bbf59c1100).",
"title": "Architecture Sha256"
},
"kwargs": {
"additionalProperties": true,
"description": "key word arguments for the `architecture` callable",
"title": "Kwargs",
"type": "object"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used.\nIf `depencencies` is specified it should include pytorch and the verison has to match.\n(`dependencies` overrules `pytorch_version`)"
}
},
"required": [
"source",
"architecture"
],
"title": "model.v0_4.PytorchStateDictWeightsDescr",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
},
"TensorflowJsWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The multi-file weights.\nAll required files/folders should be a zip archive.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowJsWeightsDescr",
"type": "object"
},
"TensorflowSavedModelBundleWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"tensorflow_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the TensorFlow library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TensorflowSavedModelBundleWeightsDescr",
"type": "object"
},
"TorchscriptWeightsDescr": {
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
},
"pytorch_version": {
"anyOf": [
{
"$ref": "#/$defs/Version"
},
{
"type": "null"
}
],
"default": null,
"description": "Version of the PyTorch library used."
}
},
"required": [
"source"
],
"title": "model.v0_4.TorchscriptWeightsDescr",
"type": "object"
},
"Version": {
"anyOf": [
{
"type": "string"
},
{
"type": "integer"
},
{
"type": "number"
}
],
"description": "wraps a packaging.version.Version instance for validation in pydantic models",
"title": "Version"
}
},
"additionalProperties": false,
"properties": {
"keras_hdf5": {
"anyOf": [
{
"$ref": "#/$defs/KerasHdf5WeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"onnx": {
"anyOf": [
{
"$ref": "#/$defs/OnnxWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"pytorch_state_dict": {
"anyOf": [
{
"$ref": "#/$defs/PytorchStateDictWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"tensorflow_js": {
"anyOf": [
{
"$ref": "#/$defs/TensorflowJsWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"tensorflow_saved_model_bundle": {
"anyOf": [
{
"$ref": "#/$defs/TensorflowSavedModelBundleWeightsDescr"
},
{
"type": "null"
}
],
"default": null
},
"torchscript": {
"anyOf": [
{
"$ref": "#/$defs/TorchscriptWeightsDescr"
},
{
"type": "null"
}
],
"default": null
}
},
"title": "model.v0_4.WeightsDescr",
"type": "object"
}
Fields:
-
keras_hdf5(Optional[KerasHdf5WeightsDescr]) -
onnx(Optional[OnnxWeightsDescr]) -
pytorch_state_dict(Optional[PytorchStateDictWeightsDescr]) -
tensorflow_js(Optional[TensorflowJsWeightsDescr]) -
tensorflow_saved_model_bundle(Optional[TensorflowSavedModelBundleWeightsDescr]) -
torchscript(Optional[TorchscriptWeightsDescr])
Validators:
pytorch_state_dict
pydantic-field
¤
pytorch_state_dict: Optional[
PytorchStateDictWeightsDescr
] = None
tensorflow_saved_model_bundle
pydantic-field
¤
tensorflow_saved_model_bundle: Optional[
TensorflowSavedModelBundleWeightsDescr
] = None
__getitem__
¤
__getitem__(key: WeightsFormat)
Source code in src/bioimageio/spec/model/v0_4.py
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | |
check_one_entry
pydantic-validator
¤
check_one_entry() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
WeightsEntryDescrBase
pydantic-model
¤
Bases: FileDescr
Show JSON schema:
{
"$defs": {
"AttachmentsDescr": {
"additionalProperties": true,
"properties": {
"files": {
"description": "File attachments",
"items": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
]
},
"title": "Files",
"type": "array"
}
},
"title": "generic.v0_2.AttachmentsDescr",
"type": "object"
},
"Author": {
"additionalProperties": false,
"properties": {
"affiliation": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Affiliation",
"title": "Affiliation"
},
"email": {
"anyOf": [
{
"format": "email",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Email",
"title": "Email"
},
"orcid": {
"anyOf": [
{
"description": "An ORCID identifier, see https://orcid.org/",
"title": "OrcidId",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "An [ORCID iD](https://support.orcid.org/hc/en-us/sections/360001495313-What-is-ORCID\n) in hyphenated groups of 4 digits, (and [valid](\nhttps://support.orcid.org/hc/en-us/articles/360006897674-Structure-of-the-ORCID-Identifier\n) as per ISO 7064 11,2.)",
"examples": [
"0000-0001-2345-6789"
],
"title": "Orcid"
},
"name": {
"title": "Name",
"type": "string"
},
"github_user": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Github User"
}
},
"required": [
"name"
],
"title": "generic.v0_2.Author",
"type": "object"
},
"RelativeFilePath": {
"description": "A path relative to the `rdf.yaml` file (also if the RDF source is a URL).",
"format": "path",
"title": "RelativeFilePath",
"type": "string"
}
},
"additionalProperties": false,
"properties": {
"source": {
"anyOf": [
{
"description": "A URL with the HTTP or HTTPS scheme.",
"format": "uri",
"maxLength": 2083,
"minLength": 1,
"title": "HttpUrl",
"type": "string"
},
{
"$ref": "#/$defs/RelativeFilePath"
},
{
"format": "file-path",
"title": "FilePath",
"type": "string"
}
],
"description": "The weights file.",
"title": "Source"
},
"sha256": {
"anyOf": [
{
"description": "A SHA-256 hash value",
"maxLength": 64,
"minLength": 64,
"title": "Sha256",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "SHA256 hash value of the **source** file.",
"title": "Sha256"
},
"attachments": {
"anyOf": [
{
"$ref": "#/$defs/AttachmentsDescr"
},
{
"type": "null"
}
],
"default": null,
"description": "Attachments that are specific to this weights entry."
},
"authors": {
"anyOf": [
{
"items": {
"$ref": "#/$defs/Author"
},
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "Authors\nEither the person(s) that have trained this model resulting in the original weights file.\n (If this is the initial weights entry, i.e. it does not have a `parent`)\nOr the person(s) who have converted the weights to this weights format.\n (If this is a child weight, i.e. it has a `parent` field)",
"title": "Authors"
},
"dependencies": {
"anyOf": [
{
"pattern": "^.+:.+$",
"title": "Dependencies",
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "Dependency manager and dependency file, specified as `<dependency manager>:<relative file path>`.",
"examples": [
"conda:environment.yaml",
"maven:./pom.xml",
"pip:./requirements.txt"
],
"title": "Dependencies"
},
"parent": {
"anyOf": [
{
"enum": [
"keras_hdf5",
"onnx",
"pytorch_state_dict",
"tensorflow_js",
"tensorflow_saved_model_bundle",
"torchscript"
],
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"description": "The source weights these weights were converted from.\nFor example, if a model's weights were converted from the `pytorch_state_dict` format to `torchscript`,\nThe `pytorch_state_dict` weights entry has no `parent` and is the parent of the `torchscript` weights.\nAll weight entries except one (the initial set of weights resulting from training the model),\nneed to have this field.",
"examples": [
"pytorch_state_dict"
],
"title": "Parent"
}
},
"required": [
"source"
],
"title": "model.v0_4.WeightsEntryDescrBase",
"type": "object"
}
Fields:
-
sha256(Optional[Sha256]) -
source(FileSource_) -
attachments(Union[AttachmentsDescr, None]) -
authors(Union[List[Author], None]) -
dependencies(Optional[Dependencies]) -
parent(Optional[WeightsFormat])
Validators:
attachments
pydantic-field
¤
attachments: Union[AttachmentsDescr, None] = None
Attachments that are specific to this weights entry.
authors
pydantic-field
¤
authors: Union[List[Author], None] = None
Authors
Either the person(s) that have trained this model resulting in the original weights file.
(If this is the initial weights entry, i.e. it does not have a parent)
Or the person(s) who have converted the weights to this weights format.
(If this is a child weight, i.e. it has a parent field)
dependencies
pydantic-field
¤
dependencies: Optional[Dependencies] = None
Dependency manager and dependency file, specified as <dependency manager>:<relative file path>.
parent
pydantic-field
¤
parent: Optional[WeightsFormat] = None
The source weights these weights were converted from.
For example, if a model's weights were converted from the pytorch_state_dict format to torchscript,
The pytorch_state_dict weights entry has no parent and is the parent of the torchscript weights.
All weight entries except one (the initial set of weights resulting from training the model),
need to have this field.
check_parent_is_not_self
pydantic-validator
¤
check_parent_is_not_self() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
288 289 290 291 292 293 | |
download
¤
download(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
alias for .get_reader
Source code in src/bioimageio/spec/_internal/io.py
306 307 308 309 310 311 312 | |
get_reader
¤
get_reader(
*,
progressbar: Union[
Progressbar, Callable[[], Progressbar], bool, None
] = None,
)
open the file source (download if needed)
Source code in src/bioimageio/spec/_internal/io.py
298 299 300 301 302 303 304 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
validate_sha256
¤
validate_sha256(force_recompute: bool = False) -> None
validate the sha256 hash value of the source file
Source code in src/bioimageio/spec/_internal/io.py
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | |
WithSuffix
dataclass
¤
WithSuffix(
suffix: Union[LiteralString, Tuple[LiteralString, ...]],
case_sensitive: bool,
)
| METHOD | DESCRIPTION |
|---|---|
__get_pydantic_core_schema__ |
|
validate |
|
| ATTRIBUTE | DESCRIPTION |
|---|---|
case_sensitive |
TYPE:
|
suffix |
TYPE:
|
__get_pydantic_core_schema__
¤
__get_pydantic_core_schema__(
source: Type[Any], handler: GetCoreSchemaHandler
)
Source code in src/bioimageio/spec/_internal/io.py
325 326 327 328 329 330 331 332 333 334 335 | |
validate
¤
validate(
value: Union[FileSource, FileDescr],
) -> Union[FileSource, FileDescr]
Source code in src/bioimageio/spec/_internal/io.py
337 338 339 340 | |
ZeroMeanUnitVarianceDescr
pydantic-model
¤
Bases: ProcessingDescrBase
Subtract mean and divide by variance.
Show JSON schema:
{
"$defs": {
"ZeroMeanUnitVarianceKwargs": {
"additionalProperties": false,
"description": "key word arguments for `ZeroMeanUnitVarianceDescr`",
"properties": {
"mode": {
"default": "fixed",
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| fixed | Fixed values for mean and variance |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"fixed",
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example `xy` to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"mean": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The mean value(s) to use for `mode: fixed`.\nFor example `[1.1, 2.2, 3.3]` in the case of a 3 channel image with `axes: xy`.",
"examples": [
[
1.1,
2.2,
3.3
]
],
"title": "Mean"
},
"std": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The standard deviation values to use for `mode: fixed`. Analogous to mean.",
"examples": [
[
0.1,
0.2,
0.3
]
],
"title": "Std"
},
"eps": {
"default": 1e-06,
"description": "epsilon for numeric stability: `out = (tensor - mean) / (std + eps)`.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"axes"
],
"title": "model.v0_4.ZeroMeanUnitVarianceKwargs",
"type": "object"
}
},
"additionalProperties": false,
"description": "Subtract mean and divide by variance.",
"properties": {
"name": {
"const": "zero_mean_unit_variance",
"title": "Name",
"type": "string"
},
"kwargs": {
"$ref": "#/$defs/ZeroMeanUnitVarianceKwargs"
}
},
"required": [
"name",
"kwargs"
],
"title": "model.v0_4.ZeroMeanUnitVarianceDescr",
"type": "object"
}
Fields:
-
name(Literal['zero_mean_unit_variance']) -
kwargs(ZeroMeanUnitVarianceKwargs)
implemented_name
class-attribute
¤
implemented_name: Literal["zero_mean_unit_variance"] = (
"zero_mean_unit_variance"
)
__pydantic_init_subclass__
classmethod
¤
__pydantic_init_subclass__(**kwargs: Any) -> None
Source code in src/bioimageio/spec/_internal/common_nodes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
ZeroMeanUnitVarianceKwargs
pydantic-model
¤
Bases: ProcessingKwargs
key word arguments for ZeroMeanUnitVarianceDescr
Show JSON schema:
{
"additionalProperties": false,
"description": "key word arguments for `ZeroMeanUnitVarianceDescr`",
"properties": {
"mode": {
"default": "fixed",
"description": "Mode for computing mean and variance.\n| mode | description |\n| ----------- | ------------------------------------ |\n| fixed | Fixed values for mean and variance |\n| per_dataset | Compute for the entire dataset |\n| per_sample | Compute for each sample individually |",
"enum": [
"fixed",
"per_dataset",
"per_sample"
],
"title": "Mode",
"type": "string"
},
"axes": {
"description": "The subset of axes to normalize jointly.\nFor example `xy` to normalize the two image axes for 2d data jointly.",
"examples": [
"xy"
],
"title": "Axes",
"type": "string"
},
"mean": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The mean value(s) to use for `mode: fixed`.\nFor example `[1.1, 2.2, 3.3]` in the case of a 3 channel image with `axes: xy`.",
"examples": [
[
1.1,
2.2,
3.3
]
],
"title": "Mean"
},
"std": {
"anyOf": [
{
"type": "number"
},
{
"items": {
"type": "number"
},
"minItems": 1,
"type": "array"
},
{
"type": "null"
}
],
"default": null,
"description": "The standard deviation values to use for `mode: fixed`. Analogous to mean.",
"examples": [
[
0.1,
0.2,
0.3
]
],
"title": "Std"
},
"eps": {
"default": 1e-06,
"description": "epsilon for numeric stability: `out = (tensor - mean) / (std + eps)`.",
"exclusiveMinimum": 0,
"maximum": 0.1,
"title": "Eps",
"type": "number"
}
},
"required": [
"axes"
],
"title": "model.v0_4.ZeroMeanUnitVarianceKwargs",
"type": "object"
}
Fields:
-
mode(Literal['fixed', 'per_dataset', 'per_sample']) -
axes(AxesInCZYX) -
mean(Union[float, NotEmpty[List[float]], None]) -
std(Union[float, NotEmpty[List[float]], None]) -
eps(float)
Validators:
axes
pydantic-field
¤
axes: AxesInCZYX
The subset of axes to normalize jointly.
For example xy to normalize the two image axes for 2d data jointly.
eps
pydantic-field
¤
eps: float = 1e-06
epsilon for numeric stability: out = (tensor - mean) / (std + eps).
mean
pydantic-field
¤
mean: Union[float, NotEmpty[List[float]], None] = None
The mean value(s) to use for mode: fixed.
For example [1.1, 2.2, 3.3] in the case of a 3 channel image with axes: xy.
mode
pydantic-field
¤
mode: Literal["fixed", "per_dataset", "per_sample"] = (
"fixed"
)
Mode for computing mean and variance. | mode | description | | ----------- | ------------------------------------ | | fixed | Fixed values for mean and variance | | per_dataset | Compute for the entire dataset | | per_sample | Compute for each sample individually |
std
pydantic-field
¤
std: Union[float, NotEmpty[List[float]], None] = None
The standard deviation values to use for mode: fixed. Analogous to mean.
__contains__
¤
__contains__(item: str) -> bool
Source code in src/bioimageio/spec/_internal/common_nodes.py
425 426 | |
__getitem__
¤
__getitem__(item: str) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
419 420 421 422 423 | |
get
¤
get(item: str, default: Any = None) -> Any
Source code in src/bioimageio/spec/_internal/common_nodes.py
416 417 | |
mean_and_std_match_mode
pydantic-validator
¤
mean_and_std_match_mode() -> Self
Source code in src/bioimageio/spec/model/v0_4.py
767 768 769 770 771 772 773 774 | |
model_validate
classmethod
¤
model_validate(
obj: Union[Any, Mapping[str, Any]],
*,
strict: Optional[bool] = None,
from_attributes: Optional[bool] = None,
context: Union[
ValidationContext, Mapping[str, Any], None
] = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self
Validate a pydantic model instance.
| PARAMETER | DESCRIPTION |
|---|---|
|
The object to validate.
TYPE:
|
|
Whether to raise an exception on invalid fields.
TYPE:
|
|
Whether to extract data from object attributes.
TYPE:
|
|
Additional context to pass to the validator.
TYPE:
|
| RAISES | DESCRIPTION |
|---|---|
ValidationError
|
If the object failed validation. |
| RETURNS | DESCRIPTION |
|---|---|
Self
|
The validated description instance. |
Source code in src/bioimageio/spec/_internal/node.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | |
convert_from_older_format
¤
convert_from_older_format(
data: BioimageioYamlContent,
) -> None
Source code in src/bioimageio/spec/model/_v0_4_converter.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | |
issue_warning
¤
issue_warning(
msg: LiteralString,
*,
value: Any,
severity: WarningSeverity = WARNING,
msg_context: Optional[Dict[str, Any]] = None,
field: Optional[str] = None,
log_depth: int = 1,
)
Source code in src/bioimageio/spec/_internal/field_warning.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | |
load_array
¤
load_array(
source: Union[FileSource, FileDescr, ZipPath],
) -> NDArray[Any]
Source code in src/bioimageio/spec/_internal/io_utils.py
344 345 346 347 348 349 | |
package_weights
¤
package_weights(
value: Node,
handler: SerializerFunctionWrapHandler,
info: SerializationInfo,
)
Source code in src/bioimageio/spec/model/v0_4.py
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 | |
validate_unique_entries
¤
validate_unique_entries(seq: Sequence[Hashable])
Source code in src/bioimageio/spec/_internal/field_validation.py
54 55 56 57 | |
warn
¤
warn(
typ: Union[AnnotationMetaData, Any],
msg: LiteralString,
severity: WarningSeverity = WARNING,
)
treat a type or its annotation metadata as a warning condition
Source code in src/bioimageio/spec/_internal/field_warning.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 | |