Skip to content

Core Compatibility Report: organized-badger/v0¤

✔️ bioimageio format validation
status passed
source https://hypha.aicell.io/bioimage-io/artifacts/organized-badger/files/rdf.yaml?version=v0
id 10.5281/zenodo.6028097/6028098
format version model 0.4.10
bioimageio.spec 0.5.6.0
Location Details
✔️ Successfully created `ModelDescr` instance.
✔️ bioimageio.spec format validation model 0.4.10
weights.pytorch_state_dict.pytorch_version
missing. Please specify the PyTorch version these PyTorch state dict weights were created with.
weights.torchscript.pytorch_version
missing. Please specify the PyTorch version these Torchscript weights were created with.
weights.pytorch_state_dict Reproduce test outputs from test inputs (pytorch_state_dict)
weights.pytorch_state_dict
'unet_7f5b15948e8e2c91f78dcff34fbf30af517073e91ba487f3edb982b948d099b3'
See Traceback 1.
weights.pytorch_state_dict
recommended conda environment (Reproduce test outputs from test inputs (pytorch_state_dict))
%YAML 1.2
---
channels:
  - pytorch
  - conda-forge
  - nodefaults
dependencies:
  - conda-forge::bioimageio.core
  - mkl ==2024.0.0
  - numpy <2
  - pip
  - pytorch==1.10.1
  - setuptools <70.0.0
  - torchaudio==0.10.1
  - torchvision==0.11.2
weights.pytorch_state_dict
conda compare (Reproduce test outputs from test inputs (pytorch_state_dict))
See Conda Environment Comparison 1.
✔️ weights.torchscript Reproduce test outputs from test inputs (torchscript)
weights.torchscript
recommended conda environment (Reproduce test outputs from test inputs (torchscript))
%YAML 1.2
---
channels:
  - pytorch
  - conda-forge
  - nodefaults
dependencies:
  - conda-forge::bioimageio.core
  - mkl ==2024.0.0
  - numpy <2
  - pip
  - pytorch==1.10.1
  - setuptools <70.0.0
  - torchaudio==0.10.1
  - torchvision==0.11.2
weights.torchscript
conda compare (Reproduce test outputs from test inputs (torchscript))
See Conda Environment Comparison 1.

Traceback 1








    
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   108 module = sys.modules.get(module_name)                                                  
   109 if module is None:                                                                     
   110 │   │   try:                                                                               
 111 │   │   │   tmp_dir = TemporaryDirectory(ignore_cleanup_errors=True)                       
   112 │   │   │   module_path = Path(tmp_dir.name) / module_name                                 
   113 │   │   │   if reader.original_file_name.endswith(".zip") or is_zipfile(reader):           
   114 │   │   │   │   module_path.mkdir()                                                        
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
TypeError: __init__() got an unexpected keyword argument 'ignore_cleanup_errors'

During handling of the above exception, another exception occurred:

╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   642 │   │   inputs = get_test_inputs(model)                                                    
   643 │   │   expected = get_test_outputs(model)                                                 
   644 │   │                                                                                      
 645 │   │   with create_prediction_pipeline(                                                   
   646 │   │   │   bioimageio_model=model, devices=devices, weight_format=weight_format           
   647 │   │   ) as prediction_pipeline:                                                          
   648 │   │   │   results = prediction_pipeline.predict_sample_without_blocking(inputs)          
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   368 │   │   │   f"deprecated create_prediction_pipeline kwargs: {set(deprecated_kwargs)}"      
   369 │   │   )                                                                                  
   370                                                                                        
 371 model_adapter = model_adapter or create_model_adapter(                                 
   372 │   │   model_description=bioimageio_model,                                                
   373 │   │   devices=devices,                                                                   
   374 │   │   weight_format_priority_order=weights_format and (weights_format,),                 
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   166 │   │   assert errors                                                                      
   167 │   │   if len(weight_format_priority_order) == 1:                                         
   168 │   │   │   assert len(errors) == 1                                                        
 169 │   │   │   raise errors[0]                                                                
   170 │   │                                                                                      
   171 │   │   else:                                                                              
   172 │   │   │   msg = (                                                                        
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   109 │   │   │   │   try:                                                                       
   110 │   │   │   │   │   from .pytorch_backend import PytorchModelAdapter                       
   111 │   │   │   │   │                                                                          
 112 │   │   │   │   │   return PytorchModelAdapter(                                            
   113 │   │   │   │   │   │   model_description=model_description, devices=devices               
   114 │   │   │   │   │   )                                                                      
   115 │   │   │   │   except Exception as e:                                                     
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
    35 │   │   │   raise ValueError("No `pytorch_state_dict` weights found")                      
    36 │   │                                                                                      
    37 │   │   devices = get_devices(devices)                                                     
  38 │   │   self._model = load_torch_model(weights, load_state=True, devices=devices)          
    39 │   │   if mode == "eval":                                                                 
    40 │   │   │   self._model = self._model.eval()                                               
    41 │   │   elif mode == "train":                                                              
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   100 load_state: bool = True,                                                               
   101 devices: Optional[Sequence[Union[str, torch.device]]] = None,                          
   102 ) -> nn.Module:                                                                            
 103 custom_callable = import_callable(                                                     
   104 │   │   weight_spec.architecture,                                                          
   105 │   │   sha256=(                                                                           
   106 │   │   │   weight_spec.architecture_sha256                                                
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
    72 │   │   module = importlib.import_module(node.import_from)                                 
    73 │   │   c = getattr(module, str(node.callable))                                            
    74 elif isinstance(node, CallableFromFile):                                               
  75 │   │   c = _import_from_file_impl(node.source_file, str(node.callable_name), **kwargs)    
    76 elif isinstance(node, ArchitectureFromFileDescr):                                      
    77 │   │   c = _import_from_file_impl(node.source, str(node.callable), sha256=node.sha256)    
    78 else:                                                                                  
                                                                                                  
 /usr/share/miniconda/envs/6957a898500e9707d2a72c887d10fb220eba92e15c14aaeeddbbc322dd3dedb8/lib/p 
                                                                                                  
   132 │   │   │   importlib_spec.loader.exec_module(module)                                      
   133 │   │                                                                                      
   134 │   │   except Exception as e:                                                             
 135 │   │   │   del sys.modules[module_name]                                                   
   136 │   │   │   raise ImportError(f"Failed to import {source}") from e                         
   137                                                                                        
   138 try:                                                                                   
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
KeyError: 'unet_7f5b15948e8e2c91f78dcff34fbf30af517073e91ba487f3edb982b948d099b3'

Conda Environment Comparison 1

usage: conda [-h] [-v] [--no-plugins] [-V] COMMAND ...  conda is a tool for managing and
deploying applications, environments and packages.  options:   -h, --help            Show this
help message and exit.   -v, --verbose         Can be used multiple times. Once for detailed
output,                         twice for INFO logging, thrice for DEBUG logging, four
times for TRACE logging.   --no-plugins          Disable all plugins that are not built into
conda.   -V, --version         Show the conda version number and exit.  commands:   The
following built-in and plugins subcommands are available.    COMMAND     activate
Activate a conda environment.     clean               Remove unused packages and caches.
commands            List all available conda subcommands (including those
from plugins). Generally only used by tab-completion.     compare             Compare packages
between conda environments.     config              Modify configuration values in .condarc.
content-trust       Signing and verification tools for Conda     create              Create a
new conda environment from a list of                         specified packages.     deactivate
Deactivate the current active conda environment.     doctor              Display a health report
for your environment.     env                 Create and manage conda environments.     export
Export a given environment     info                Display information about current conda
install.     init                Initialize conda for shell interaction.     install
Install a list of packages into a specified conda                         environment.     list
List installed packages in a conda environment.     notices             Retrieve latest channel
notifications.     package             Create low-level conda packages. (EXPERIMENTAL)
remove (uninstall)  Remove a list of packages from a specified conda
environment.     rename              Rename an existing environment.     repoquery
Advanced search for repodata.     run                 Run an executable in a conda environment.
search              Search for packages and display associated information
using the MatchSpec format.     token               Set repository access token and configure
default_channels     tos                 A subcommand for viewing, accepting, rejecting, and
otherwise interacting with a channel's Terms of                         Service (ToS). This
plugin periodically checks for                         updated Terms of Service for the
active/selected                         channels. Channels with a Terms of Service will need
to be accepted or rejected prior to use. Conda will                         only allow package
installation from channels without                         a Terms of Service or with an
accepted Terms of                         Service. Attempting to use a channel with a rejected
Terms of Service will result in an error.     update (upgrade)    Update conda packages to the
latest compatible                         version.